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ABSTRACT

This thesis addresses stable inversion based output tracking control and its appli-
cations to robotic systems. It considers the non-causal invertibility (stable inversion)
problem of control systems in its various aspects including properties of stable inverses
and algorithms for constructing stable inverses. Then, the stable inversion approach is
applied to solve a control problem of long-standing interest: output tracking control for
non-minimum phase nonlinear systems.

A minimum energy property of stable inverses is firstly established. The property
claims that given any desired output trajectory, out of infinitely many possible inverse
solutions, the one provided by the stable inversion process is the only one that has
finite energy. Based on this property, a numerical procedure is developed to provide an
efficient approach to construct stable inverses.

Secondly, a new output tracking control design is developed. The design incorpo-
rates stable inverses and assumes a controller structure of feed-forward plus feedback.
It achieves high precision tracking together with closed-loop stability. Furthermore,
when system uncertainties are considered and assumed to satisfy the so-called “match-
ing conditions”, a modified controller structure is presented and the corresponding robust
tracking performance is discussed.

Finally, the stable inversion based tracking control design is applied to three flexible
robotic systems. The first study is output tracking control of a flexible-joint robot. The
application demonstrates how the new design deals with the undesirable non-minimum

phase property and achieves desired output tracking. The second application is tip
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trajectory tracking for a two-flexible-link manipulator. This thesis, for the first time.
addresses the problem of stable tip trajectory tracking without any transient or steady-
state errors for such non-minimum phase systems. In the third application, a new
optimal motion control strategy for a flexible space robot is presented. The space robot
system is assumed to consist of a two-link flexible manipulator attached to rigid space-
craft. Optimality is in the sense that a performance index measured by maneuvering
time, control effort, and structural vibrations is minimized while the interference from
the manipulator to spacecraft is kept satisfactorily small.

Studies on three applications demonstrate that the stable inversion based control
design is very effective on output tracking for various robotic systems. This approach
is expected to perform equivalently well for many other realistic non-minimum phase

nonlinear systems.



CHAPTER 1 INTRODUCTION

As enormous computing power of microprocessors and computers is becoming avail-
able to control theorists and engineers. higher and higher quality performance is being
demanded from control systems. This has led to better modeling of complex dynamic
systems and control systems design incorporating features of the better models. De-
tailed modeling often results in highly nonlinear descriptions of physical systems. This
imposes considerable limitations on the ability to use traditional linear control systems
even though linear control theory has achieved a high degree of maturity. Only within
a limited operating range may some physical systems be approximated by linear models
based on which linear controllers are designed. Therefore, there has been a great deal
of emphasis on nonlinear control systems. Because they are designed based on the com-
plete nonlinear description of system dynamics. nonlinear control systems are expected

to provide better performance.

1.1 Problem Statement

System inversion, as an approach to nonlinear control, provides a systematic control
systems design technique. Control systems design via the system inversion approach
explores a fundamental property. the (right) invertibility property, of control systems.
This property means the ability of a control system to reproduce an arbitrary prescribed

trajectory at the output by manipulating the control input (and the initial states).
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It is known for a long time that inverse systems have been used to solve numerous
control problems such as disturbance decoupling, model matching, and minimal real-
izations. Furthermore, the inversion problem is especially of direct interest in servo,
output tracking, and feed-forward control. However, being causal solutions in classi-
cal inversion, inverse controls are necessarily unstable for those systems with unstable
zero dynamics, the non-minimum phase systems. Many important engineering systems
such as airplane flight control, rocket autopilot, and motion control of flexible robots
are known to be nonlinear and of non-minimum phase. Therefore, stable inversion, a
non-causal approach to system inversion, which investigates possibly bounded inverse
controls for both minimum and non-minimum phase systems. is becoming of significant
importance for such engineering systems.

For this reason, we in this thesis consider the non-causal invertibility problem (stable
inversion) of control systems in its various aspects including properties of stable inverses
and algorithms to construct the stable inverse solutions. Then, the stable inversion
approach is applied to solve a control problem of long-standing interest: output tracking
control for non-minimum phase nonlinear systems.

Generally speaking, the output tracking control problem is to design a control system
such that the system output follows or “tracks™ a prescribed reference trajectory (as a
function of time) as closely as possible. In the meantime, all internal and external signals
of the closed-loop control system connecting both physical system and controller remain
stable. The overall performance of an output tracking control system is based on the
ability of the system output to robustly respond to the reference signal despite possible
changes in the system parameters or unmodeled dynamics, as well as the presence of
external disturbances.

It has long been recognized that the non-minimum phase property of systems is a
major obstacle in output tracking control. A system is of non-minimum phase if there

exists a (nonlinear) feedback that can hold the system output identically zero while



the internal dynamics become unstable [29]. In the linear case those are the systems
with unstable zeros. By incorporating stable inversion, this thesis aims at solving the
problem of output tracking control for a class of non-minimum phase nonlinear systems
with smooth dynamics and affine in control input. For the first time, a systematic output
tracking design approach for such non-minimum phase systems is successfully applied

to output tracking and motion control of various flexible robotic systems.

1.2 Outline of the Thesis

The outline of the thesis is as follows.

Chapter 2 is intended to serve as an introduction to stable inversion as well as its
relevant background information. We start by briefly reviewing recent publications on
invertibility problem of control systems and the theory of nonlinear differential geomet-
ric control. Various design approaches currently used in output tracking control are
discussed. With a brief description of notations from differential geometry which are
used throughout the thesis, we introduce the stable inversion theory by presenting its
framework and some of its most important results.

Chapter 3 presents one of the main contributions of the thesis. It establishes a
minimum energy property for stable inverses, the inverse solutions by stable inversion.
The property claims that given any desired output trajectory, out of infinitely many
possible inverse solutions, the one provided by the stable inversion process is the only
one that has finite £;(~o00.+00)-norm. Based on this property, a numerical procedure
is developed to provide an efficient method to construct stable inverses by constructing
and solving an optimal control problem. The problem searches for the minimum energy
control among all exact-output-reproduction inputs. It is solved via an iteration on

linearization, discretization, and pseudo-inversion processes.



Chapter 4 deals with output tracking control incorporating stable inverses. We de-
velop a systematic design approach for the stable inversion based tracking controller
which is expected to drive system output to accurately track prescribed trajectories in
output and to maintain boundedness of all internal and external signals. Performance of
asymptotic tracking and e-tracking as defined in the thesis is established for the proposed
tracking control system. A robustness result is also presented for system dynamics with
uncertainties satisfying the so-called “matching conditions™.

Chapter 5 applies the tracking control design developed in Chapter 4 to output
tracking control of a single-link flexible-joint robot system. After development of forward
system dynamics using the Lagrange’s method, we define a stable inversion problem for
such robot system. It is followed by construction of the stable inverse solution to the
problem. Then, an output tracking controller incorporating the stable inverse with only
partial state measurement is designed. A simulation study demonstrates the effectiveness
of the design approach in dealing with the very undesirable non-minimum phase property
of this robot system and in achieving desired output tracking performance.

Chapter 6 is an application on tip trajectory tracking using stable inversion for a
two-link flexible manipulator. After a review of recent works published on modeling and
control of robot manipulators, equations of motion are first developed using the assumed
modes technique for a two-link flexible manipulator with tip position as output. From
that. an inverse model is derived and a two-point boundary value condition is set up.
This condition guarantees that the inverse solution for a given desired tip trajectory
will be stable regardless of the fact that a flexible manipulator is a non-minimum phase
system. The stable inverse solution is then used as a feed-forward signal together with
a joint-angle stabilizing feedback to an output tracking controller. Excellent output
tracking is achieved without any transient or steady-state errors. In a simulation study,
simulation results compare very favorably against the performance of the well-known

computed torque method.



Chapter 7 presents a new optimal motion control strategy using stable inversion for
a flexible space robot system. The system consists of a two-link flexible manipulator
attached to rigid spacecraft floating in space. Optimality is in the sense that a perfor-
mance index measured by maneuvering time, control effort, and structural vibrations is
minimized while the interference from the arm to spacecraft is kept satisfactorily small.
After introducing forward system dynamics, the optimal motion control is formulated as
a nonlinear optimal control problem. The problem is then reorganized into two stages.
The inner-stage is an unconstrained exact output tracking problem that is automati-
cally solved by applying stable inversion. The two-stage problem is then reduced to
the outer-stage optimal trajectory planning problem. A suboptimal solution is pursued
that leads to a planned tip trajectory. A stable inversion based output tracking con-
troller is designed that drives the robot to track the planned trajectory. The controller
assumes only joint-angle measurement and joint-torque control. but not any forces from
spacecraft.

Conclusions are finally given in Chapter 8. It summarizes the contributions of the
research presented in this thesis. Possible future work on improvement and extensions

of current studies is also discussed.



CHAPTER 2 STABLE INVERSION

Stable inversion is by definition a part of the invertibility problem of control svs-
tems. It addresses the non-causal inversion of nonlinear (and linear) systems from the
perspective of nonlinear differential geometric control theory. The introduction of sta-
ble inversion into the control world is motivated by the challenging problem of output
tracking control for non-minimum phase nonlinear systems. Advances on all these three
areas, system invertibility, differential geometric control, and output tracking, conse-

quently pave the way to the development of stable inversion.

2.1 Literature Review

2.1.1 Invertibility of control systems

For every control system there is an input/output map associated with some pre-
scribed initial conditions. The question of the (right) invertibility is essentially that of
the surjectivity of this map. This fundamental problem has been extensively studied for
over three decades. It was first attacked by Brockett and Mesarovic [6] in the mid-1960s.
Later on, an easy-to-follow step-by-step procedure called Structure Algorithm [53] was
developed by Silverman to construct (causal) inverses for a class of multivariable linear
systems. Systematic studies of the invertibility problem for nonlinear systems began
with Hirschorn’s papers [25, 26, 27] in the late-1970s in which linear results were ex-
tended to nonlinear real-analytic systems. Singh in his papers [54, 55, 56] had obtained

similar results on the development of nonlinear generalization of the Structure Algorithm
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as well as its applications. There have also been other attempts in applving various tech-
niques such as the differential algebraic approach [18, 19, 16] by Fliess and the geometric
method [44, 45] by Nijmeijer. For discrete-time control systems, the inversion problem
was addressed in an early paper [51] by Sain and Massey and later on by El Asmi and
Fliess in their paper [17] and by Grizzle’s paper [24]. A rather thorough treatment in
this discrete-time case of the inversion problem and its applications to systems synthesis

can be found in a recently published book [34] by Kotta.

2.1.2 Nonlinear differential geometric control

While much of the material on the theory of nonlinear geometric control can be traced
to recent publications, it is well collected and presented in two books. Nonlinear Control
Systems [29] by Isidori and Nonlinear Dynamical Control Systems [47] by Nijmeijer and
van der Schaft. Nonlinear systems with affine input have in particular attracted much
attention. A paper [28]| published in 1983 by Hunt, Su. and Meyer was one of the
early widely recognized works dealing with exact state linearization by using feedback
and coordinate transformation. Issues of input-output linearization and input-output
decoupling were discussed in many papers including [31] by Isidori et al.. [58] by Singh
and Rugh, and [57] by Singh. The concept of zero dynamics plays a key role in the
differential geometric control. The relation of the zero dynamics to transmission zeros
in linear systems was introduced in papers [32, 35| by Isidori et al. A related notion
of zeros at infinity was discussed in a paper [46] by Nijmeijer and Schumacher. Recent
advances of differential geometric control theory have provided a solid theoretic basis

for the development of the stable inversion theory.

2.1.3 Output tracking control

The problem of asymptotic output tracking control for linear time-invariant systems

was solved early in 1970s and summarized as the Internal Model Principle [21] by Fran-



cis and Wonham. Interested readers may refer to papers [13] by Davison and [20] by
Francis for additional references. Based on the differential geometric control theory,
the matrix equations defining asymptotic tracking controllers for linear systems were
translated into nonlinear partial differential equations lately by Isidori and Byrnes [30]
to deal with tracking control for nonlinear systems. This approach, known as nonlinear
regulation, uses a controller structure of feed-forward plus feedback and provides zero
steady-state error output tracking for a class of reference trajectories generated from
given autonomous exosystems. The feed-forward signal is obtained by solving a set of
partial differential equations of the same order as that of the forward dvnamics. The
feedback is an exponentially stabilizing control law. A application of this regulation
approach to a flexible robot manipulator for tip trajectory tracking can be found in a
paper [15] by De Luca and Siciliano. Besides the numerical tractability of nonlinear
partial differential equations, a major concern is the possibly large transient error that
is not controlled in this regulation approach.

The transient behavior can be precisely controlled by using a classical inversion based
output tracking control approach {26, 34]. This approach assumes the same controller
structure of feed-forward plus feedback as that used by the regulation approach. The
same stabilizing feedback is used. The feed-forward signal is, however, generated by
solving an inverse system as an initial value problem for a given output function. For
minimum phase systems, this approach has been successfully used in designing output
tracking control systems. Inversion based control of robot manipulators can be found
in papers [14] by De Luca and Siciliano and [37] by Madhavan and Singh and many
others. For flight control applications, see publications by Wise [64], Morton (42|, and
Azam and Singh [1] for examples. In addition to the basic system invertibility problem.
the fundamental difficulty of this inversion based tracking control is the phenomenon of

unbounded inverse control signals generated for non-minimum phase systems.



2.2 Stable Inversion

2.2.1 Characterization and preliminaries

Stable inversion, expected to play a key role in achieving high precision output track-
ing control for non-minimum phase nonlinear systems, was introduced to the control
world lately by Chen and Paden [11, 12]. It considers multivariable nonlinear control
systems of the following state-space form

i o= flo)+ Y gilo)us (2.1)

=]

y = hiz), 1<i<m (2.2)
In a more compact form. it can be written as
z = f(z) + g(z)u, (2.3)

y = h(z), (2.4)

where system state z is defined on an open neighborhood of the origin of R™ and u € R™
and y € R™. It is assumed that f(z) and ¢i(z) for i = 1,2,...,m are smooth vector
fields and hi(z) for: = 1,2..... m are smooth functions defined on the neighborhood
with f(0) =0 and A(0) = 0.

The class (2.3)-(2.4) describes a large number of physical systems of interest in many
engineering applications. including of course linear systems. For such systems, the stable
inversion problem can be stated as follows.

Definition 1 (Stable Inversion Problem) Given any smooth reference output trajectory
ya with compact support (Assumption 2), find a bounded control input uy and a bounded
state trajectory T4 such that uq — 0 and z4 — 0 as t — *oc and their image by the

input/output map of the control system (2.3)-(2.4) is ezxactly y,.
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The pair (z4, ug) is the stable inverse solution for a given reference output yy. It is called
stable inverse because of the boundedness and convergence provided by the definition.
We also call z4 the desired state trajectory and uy4 the nominal control input.

For convenience, notations from differential geometry are used throughout this thesis.

With N {1,2,...} and y:R*—R™, we define

déf [r17r17°--7rm ]T € NT", (2.5)
r) def r rm ¢
y@ = [y T (2.6)

For h:R*—=R™, f:R"—R", and g=[g1,--..,9m] with g;:R*—>R", we define

N
-1
~

Lyh ¥ [L}h, LPhe,... LT ha 5. (2.

Loh % [Lyh Lk, ..., Lokl (2.

[E]
o
~—

where the notation L?h,— and so on are defined as follows.

For a real-valued function h; and a vector field f both defined on an open neigh-
borhood of the origin of R™, the function called the derivative of h; along f is defined
as

det Ohi _ < Ohi
Lihi(z) = 5-f(2) = :L:,l azkf"(z)’ (2.9)

at each r of the neighborhood. By taking the derivative of h; first along a vector field f

and then along another vector field g;, we define a new function

Lo, Lyhi(e) e 2o g . (2.10)

Thus. L7 h;(z) satisfies
(L} hi(z))

5 f(z), (2.11)

L;'h; =
with LGhi(z) = hi(z).
For the time being, only systems of the form (2.3)-(2.4) with a well-defined relative

degree are considered. Using the notations introduced, this assumption can be stated

as follows.
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Assumption 1 The nonlinear system in the form of (2.3)-(2.4) has a well-defined vec-
tor relative degree r € N™ at the origin, i.e. in an open neighborhood of the origin,

(i) forall1 < j<m, forall1 <i<m, forall0 <k <r;—1, and for all z,
Ly, Lihi(z) = 0; (2.12)

(ii) the following m xm matriz is nonsingular at the origin z = 0:

-

LglL?—lhl(.’L‘) . e LgmL?-lhl(I)
Ly L7 ho(z) ... L, L7 'hy(z

B(z) ¥ Ll h(z)=| 2(z) gm L alz) (2.13)
Ly, L7 'hm(z) ... Ly L7 'hn(z)

It is noticed that the number r; is exactly the number of times one has to differentiate
the ith output y;(z) in order to have at least one component of the input vector u

explicitly appearing. It is also noticed that because the control u does not appear in

In the definition of the stable inversion problem, we require the reference output

trajectory yq to have compact support. This requirement can be stated as follows.

Assumption 2 The reference output trajectory yq is a sufficiently smooth function of

time satisfying y4(t) =0 for all t < tq and t > t; where t; > to are both finite.

The results of stable inversion reviewed in this section can be extended with little
effort to cover reference trajectories whose first derivatives have compact support. This
extension covers a large class of realistic trajectories. For those trajectories, all contri-
butions of the thesis from Chapter 3 to Chapter 7 remain valid except for Theorem 4.
The only additional requirement in addition to the assumptions stated throughout the

thesis is that r; > 2 corresponding to the output component i with such extension.
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2.2.2 Construction of stable inverses

Under Assumption 1, system dynamics (2.3) can be partially linearized [29]. To do
this, we define

def 2 2 T
5 :—e' [6}’6%7"-15:17617"'1 ,-,a---»f,’-’,‘,,]

def (r1—1) (r2—1) (rm-1) ]T. (2.14)

[yl:yla"'vyl 1Y25- -0 Y2 yeeorYm

In the trivial case when ry+---+r, =n, the dynamics can be completely linearized by
a state feedback and the inversion problem becomes a kinematic or algebraic inversion.

Hence, it is assumed that r;+-:-+r, <n. Choose 1 such that
(7,07 )T = [ (), (z)]T = ®(z) (2.15)

forms a local coordinate transformation with ®(0) = 0. To qualify as a change of
coordinates, ®(z) should be chosen such that it has a Jacobian matrix that is nonsingular

at the origin. In the new coordinate, dynamics equation (2.3) becomes

& =6

£, =¢ (2.16)
= og(6.m) + B n)u

1 = an(&n)+ By(&:n)u,

for : =1,2,...,m. In a more compact form, it is equivalent to
¥ = a(€, 1) + B ), (2.17)
n=an(&n) + By(& 1)y, (2.18)
where

ale,n) E LIA(®7(E, 7)), (2.19)
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B(E,m) E LyL7 h(27YE,n)), (2.20)
an(&n) E Lign(®7YE M), (2.21)
Bo(€m) E Lega(@71(E M), (2.22)

and ¢; and §; are the ith row of a() and B( ) respectively.
Let ys be any prescribed output trajectory. Set y(t) = yq(t). Then, we immediately
have

def . ri—1 ro—1 m—1 ¢
6 = Ed é [ydlvydls---vyt(ill ),dea'-'sy}izz )7"'7y¢(i:n )]T' (223)

and y™ =y, Solving for u from equation (2.17), we obtain

u= B L)y — al€sn)]. (2.24)

The invertibility of 3( ) is guaranteed by Assumption 1. Upon substituting (2.24). equa-

tion (2.18) becomes the so-called reference dynamics:

n = p(&.n), (2.25)
where
A (2.26)
Yq
p(€a. 1) E an(€a,n) + Bal(&a,m)B (€, M)l — al€aym) - (2.27)

Reference dynamics (2.25) together with equation (2.24) constitutes inverse system dy-
namics for given y;. When y; = 0 (and consequently £; = 0), the reference dynamics

becomes autonomous zero dynamics:

n = p(0,n). (2.28)

It is interesting to notice that the linear approximation of the zero dynamics (2.28)
at 7 = 0 coincides with the zero dynamics of the linear approximation of the entire

system (2.3)-(2.4). In other words, the linear approximation at n = 0 of the zero
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dynamics has eigenvalues which coincide with the zeros of the transfer function of the
linear approximation at z = 0 of the entire system.

The zero dynamics (2.28) corresponds to the dynamics describing the “internal”
behavior of the system when input and initial conditions have been chosen in such
a way as to constrain the output to remain identically zero. Nonlinear systems with
unstable zero dynamics are said to have non-minimum phase.

[t is noticed that the reference dynamics does become the zero dynamics for ¢ outside
the compact interval [to, ¢s] (by Assumption 2).

Assumption 3 The linear approzimation at 1 = 0 of the zero dynamics (2.28) has no

eigenvalues on the imaginary azis.

In other words, the assumption requires that the zero dynamics has a hyperbolic equi-

librium point at the origin.

Theorem 1 (See Chen and Paden [12] for a proof.) Under Assumptions 1-3, the stable
inversion problem has a solution if and only if the following two-point boundary value

problem has a solution

n = p(€a,m), (2.29)
subject to
to) € W
n(to) (2.30)
n(ts) € W°,

where W* and W* are respectively the invariant unstable manifold and the stable manifold

of the zero dynamics (2.28).

The solution of this two-point boundary value problem n, will provide a way to compute
the stable inverse pair (zq4,uq) through the inverse coordinate transformation of (2.15)

and equation (2.24) which is the output equation of inverse dynamics:

zqg = 071(&4, na), (2.31)
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ug =87 (za) [y — a(z4)]. (2.32)

The properties of existence and uniqueness of stable inverses are given by the follow-

ing theorem.

Theorem 2 (See Chen and Paden [12] for a proof.) Under Assumptions 1-3, the two-

point boundary value problem (2.29)-(2.30) locally has a unique solution.

In a paper [9] by Chen, an approach was developed to solve the two-point boundary
value problem (2.29)-(2.30) by iteratively linearizing the nonlinear problem into a linear
time-varying problem at each iteration step. The linear problem in each iteration is
then solved by applying a method similar to the so-called Sweep Method [7] from linear
quadratic optimal control. The main idea in this approach is to try to separate stable
and unstable dynamics and then to integrate the stable part forward in time while to
integrate the unstable part backward in time. The procedure will be utilized in a tip
trajectory tracking design studied in Chapter 7. See Appendix A for more details on
this algorithm.

[t is noticed that stable inversion designs a possibly non-causal inverse system for
a given desired output trajectory. The non-causality comes from the fact that stable
inverses are defined and of possible non-zero values over the entire time horizon whereas
the output functions are required to have compact support over [to,t7]. This non-
causality of the inversion process is perfectly fine from an engineering point of view
because an inverse system is not a physical system but a general nonlinear map (from a
given output to an input). For minimum phase systems stable inversion coincides with

the Hirschorn’s classical (causal) inversion.
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CHAPTER 3 PROPERTIES GF STABLE INVERSES

Stable inverses have some properties by definition: boundedness, convergence, and
non-causality. The properties of existence, uniqueness, and continuous dependence on
reference output trajectories can be established from Theorem 2 and its proof. In ad-
dition to these important features, energy quantity associated with the stable inverse

solutions is studied in this chapter.

3.1 Minimal Energy Properties

The goal of this section is to establish that out of an infinite number of input and state
trajectories that are capable of producing exactly a given output trajectory, the desired
state trajectory and the nominal control input given by the stable inversion process is
the only pair yielding a finite £,(—o00, +00)-norm. This is a very important property of
stable inversion. It immediately suggests its value in many applications where output
tracking, input energy consumption, and internal vibrations are of concern.

Before we start, we recall two standard theorems from theory of ordinary differential
equations, Theorem 10 and Theorem 11. Both are quoted in Appendix B. Theorem 10
concerns a local property of solutions on stable or unstable manifolds of a hyperbolic
equilibrium point. The solutions are expected to approach the equilibrium point expo-
nentially. Theorem 11 addresses a local property of solutions that are on neither stable
nor unstable manifolds of a hyperbolic equilibrium point. In this case, the solutions

must leave a prescribed spherical neighborhood with center at the equilibrium point at



17

some finite time.

In the proof of Theorem 3, these two theorems will be applied to the reference dy-
namics (2.29) for t < tp and t > t; during which the dynamics becomes the autonomous
zero dynamics (2.28). With these preparations, we start by showing in Theorem 3
that the boundary condition (2.30) ensures finite energy of the solution to the two-point
boundary value problem, but those not satisfying the boundary condition (2.30) all have

infinite energy.

3.1.1 Modes of reference dynamics

Theorem 3 Suppose Assumptions -3 are all satisfied. Then, among all the solutions
of the reference dynamics (2.29), the ng that satisfies the boundary condition (2.30) is

the only one yielding a finite L,(—oc,400)-norm.

Proof: By Theorem 2, Assumptions 1-3 guarantee the existence of a unique ny(t) for all

t € (—oc, +00). Consider

[T et = [ ) B+ [l e+ [ Mm@l (31)

Since nq is continuous, it is bounded over a compact interval. Denote
sy =sup{|[na(t)]l2 | ta <t < tp ) (3.2)
From the boundary condition (2.30) we have ng(t;) € W® for all ¢ > ¢y since W° is time
invariant. By Theorem 10. there exist finite constants a; > 0 and 3; > 0 such that
Ina(t)ll2 < aullmalts) |2 exp{=8i[t — ts]}
< asrexp{-pi[t—¢t7]}, Vt>t. (3.3)
Similarly the boundary condition (2.30) also implies that ng(Zs) € W* for all ¢t < g and

that there exist finite constants a; > 0 and 3, > 0 such that

Ina(t)ll2 < a2l na(to) [|2 exp{B2[t — to]}

< agrrexp{fa(t —to)}. Vi< to (3.4)



18

Hence,
fo 2 o 5 2 azk} .
[ @it < [ efntexp{2Balt ~ tol}dt = S (3.5)
¢ 2 2
[ Ima®) 13t < w3ty — tol, (3.6)
0
oo ) ajki
[T a3 < [ okt exp{-2610t ~ ]} dt = S, (3.7)
ty ty 28,
Substituting (3.5)-(3.7) into (3.1) we get
2 +eo 2 aQ
1922 oo = [ I 7a(®) 13t < iy < +oo, (38)

where the constant
2,2 2.2
def 0251 ok

Kg = .
T 26, 26,

On the other hand. consider any other solution 7n(¢) of equation (2.29) that does not

(3.9)

+ &2[t; — to] +

satisfy the boundary condition (2.30). that is.
1(te) ¢ W*  andfor  n(t;) & W".

Suppose n(t;) & W*, then n(t) € W* for all £ > t; due to the invariance of W*. We want

to show that the £;(—00, +00)-norm of this solution is infinite by showing
+00 )
[ ) 13 dt = +oo. (3.10)
!

Select a constant §; = 28 > 0 as in Theorem 11. Without loss of generality, we assume
that ||n(t)||]2 = 24 is not an equilibrium since otherwise we immediately have (3.10). Let
{te. £ =1,2.3,..., tes1 > tx > ts} be the set of all time points at which 7 enters the
ball B(é;). If this set is empty and n(tf) € B(24), n will leave the ball in finite time
according to Theorem 11 and stay outside for the rest of the time, or if n(t;) € B(26)
it will remain outside the ball for all ¢ > ;. In either case, equation (3.10) is obviously
true. If the set is nonempty, we construct a new set {t;, £ =1,2,3, ..., ti,, >t >t}

as follows. Let t; = ¢, and [, = [t}, t; + At]. Then find the first ¢; € [; in the ¢, set and
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let t; = t; and I, = [t), t, + At]. Continue this process until the ¢ set is exhausted.
The constant At in this process is defined by

)
" maz| p(y{, 2,1 € B(26))(t) ||z

With this At, it follows easily that || n(¢) ||z > 4 for all ¢ € I since || n(t}) || = 26.

(3.11)

At

Two situations need to be considered. First, the set ¢, contains finite number of
points. By Theorem 11. n(t) will leave the ball in finite time after each /;. Therefore
the total amount of time during which n(¢) is inside the ball is finite and during the
rest of the time it is outside the ball, or, || n(¢) ||2 > 2. Consequently. equation (3.10)

is true.

In the second situation, the set {¢;} contains infinite number of points. In this case.
k p

noticing that all these I;’s are disjoint, we have

+00 Q oQ
t) |13 dt > t)[|3dt > §2dt = ) 8%At. 3.12
L@z [ o lde 2 Y [ stde= 3 (3.12)

which is unbounded and implies equation (3.10).

A similar argument can be made when n(fy) &€ W*. Hence. violating any part of the

boundary condition (2.30) always leads to || 7| £,(~co.+oc) = OC-

3.1.2 State and input trajectories

Based on Theorem 3, we establish a minimum energy property of the desired state
trajectory z4. The following technical assumption will be assumed in the proof of the
property.

Assumption 4 For any smooth reference output trajectory yq, the reference dynam-

ics (2.29) does not have a finite escape time.
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Theorem 4 Suppose Assumptions 1-{ are all satisfied. Then, among the infinitely
many state trajectories z which map ezactly into a desired output trajectory yq, the
z4 computed by zq4 = ®~1(€4,m4), where ng is the solution of (2.29) subjected to (2.30).

is the only one yielding a finite Lo(—o0c, +00)-norm.

Proof: The inverse coordinate transformation z4 = ®~!(&;,74) with ®-1(0.0) = 0 is
a local diffeomorphism which implies that ®~!() is locally Lipschitz continuous. Since
both ¢; and 74 are bounded, there exists a suitable compact set over which there are

Lipschitz constants x; and k; such that

[ Zd | co(=cortoo) < Kl €allco(=o0.t00) + K2l 2l £2(—00.400)

= K'l” €d ”C2[t0v‘f] + 52” N ”Cz(—OO'+°°)' (3.13)

Both terms on the right hand side are finite by Assumption 2 and Theorem 3. Therefore.
so is the £;(—oc. +00)-norm of z,.

Notice that any other state trajectories that map exactly into the reference trajectory
y4(t) can be found by the change of coordinate £ = ®~!(&;,n) where 7 is a solution of
the reference dynamics (2.29) that does not satisfy (2.30). Since ®() is also a local
diffeomorphism, it is locally Lipschitz continuous in z. However. in this case neither r
nor 1 can be guaranteed to be small. To deal with this complication. let us divide R
into [; + [, such that

z(t) € B(d) Vte I,
z(t) & B(do) Vte [,
for some small positive number &. If I, is infinite, then ||z ||¢,(~cot00) = 00 since

lz(t)|]2 > do for t € I,. Now assume [, has finite measure. Let k3 be a Lipschitz

constant of ®( ) over B(dy). Then for all ¢ € [; we have

t
{n(t) |l < sult) = [[®(z)(t) ][z < rall z(t) {[2- (3.14)

n(t)



Hence,

+00 : L 1 i
= lexictony = [ [ Nott)[3de]" > [[ 12(t) 122 z[— /. unmn%dt]

= 2| [T unter et - [ inco ] = Leo -

K3

N

= co. (3.15)

Notice that in the last equation we used the results of Theorem 3 and Assumption 4
that there is no finite escape time to the reference dynamics. Therefore, the integral
over a finite domain I, is a finite number .. Consequently, we have || z || ,(=c0.400) = ©©

in both situations of I, having finite measure and infinite measure.

a

To establish the minimum energy property of the nominal control input u4. we pose

another technical assumption as follows.

Assumption 5 On the zero dynamics manifold £ =0,
(i) B(z) & L,L7 h(z) is globally uniformly bounded;
(i) given any & > 0, At > 0. there exists an €(At,§) > 0 such that for all t,

[n(r)]l2 > 8 for all T € [t,t + At] implies that || a(0, n) Hf:z[t.H_A,] >e.

It is noticed from equation (2.17) that matrix 3( ) is the high frequency gain from input
to output which is bounded for any practical systems. Therefore, the first condition in
the assumption does not pose any practical constraints. The second condition is related
to the system’s observability. In the linear case, if the zero dynamics is observable from

a( ), then the condition is satisfied.

Theorem 5 Suppose Assumptions 1-5 are all satisfied. Then, among all the control
inputs u which would reproduce ezactly the reference trajectory yq, the ug computed by
Uy = B“(éd,nd)[yy) — a(&q.m2)], where ng is the solution of (2.29) subjected to (2.30),

is the only one yielding a finite Lo(—o00, +00)-norm.
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Proof: Recall that by definition the stable inverses are all bounded. Denote
k1 = sup{ || ua(t)flz | ta <t <5} (3.16)

Thus,
ty -
[ Nuat) 3 dt < w2t - tal (3.17)
0

As the reference trajectory yq is of compact support, we have for t & [to.¢f],
ug = —B7'(0,n4)ax(0, na)- (3.18)

By smoothness we have that 37!(0,74)a(0,nq) is locally Lipschitz continuous with re-
spect to ny. From the boundedness of 74 there exists an appropriate compact set over

which there are Lipschitz constants x, and x3 such that
 ua fla(=oouto] = 1870, 1) (0, 7a) || £5(~o0ta] < Kol T | co(=couto] (3.19)

| a ll cagegoo) = 18710, 1a)e(0,ma) | £ty o0y < K3l |l oty 00) - (3.20)

Notice that in the above we have used the fact «(0.0) = 0 which is a consequence of
f(0) = 0. Combining equations (3.17)-(3.20) we can conclude that the £y(—o0,+00)-
norm of uy is of a finite value.

Now consider any other control input u that also reproduce exactly the reference tra-
jectory. It is noticed that u can also be written as u = 8~!(&4, 7 [y —a(fd, n)]. where 1 is
a solution of (2.29) that does not satisfy the boundary condition (2.30). For ¢ outside the
compact interval [to,%s]. we have £ = 0 and the input becomes u = —3~1(0,7)a(0, n).
By Assumption 5 on global uniform boundedness of the matrix 3(0,7), there exists a
finite constant x4, such that

1
~ 118(0,m)(2) ||

Assumption 5 assumes that there exists a positive constant ¢ > 0 such that

lu()ll2 2 | (@, n)(t) [l2 2 —II a(0,7)(t) l2- (3.21)

(0,7 Z,jesag 2 €. whenever  [In(t)]l2 > é.
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Let 6 and At be chosen as in the proof of Theorem 3. The rest of the proof shows
| @(0,7) || £3(~c0,4+00) = o0 and it follows identically the same lines as in the corresponding
part of the proof of Theorem 3.

Therefore, we conclude from (3.21) that || 4 ||£,(~co.400) = +00.

O

It is noticed that even though the stable inverse is shown to be the only inverse
solution pair yielding a finite £2(—oc, +00)-norm, however, it is impossible in practice
to work with the infinite horizon (—oo,+00). Instead, a finite interval [¢q.;] will be
used where o < ¢o and #; > ¢;.

Let u;n, be any control input defined on (£, {/] and it produces y(t) = y4(t) on [fo. /]

As an immediate consequence of Theorem 35, we have the following result.

Corollary 1 Given any finite 6, > 0. there erists a finite t,, > 0 such that for all

to<to—tm and tf 2 t;+tp,

” Uinv ”Cz[fo‘t}] - ” Uq ”Cz[fovt_[] > 6. (3.22)

It is noticed that in order for this corollary to be true, the interval [fo,;] has to be
large enough. In this sense, the nominal control input u4 is the minimum energy control

among all exact-output-reproduction inputs.

3.2 An Algorithm to Stable Inverses

The solution of the two-point boundary value problem (2.29)-(2.30) 74 provides a
way to compute the stable inverse pair through the inverse coordinate transforma-
tion (2.31) and inverse output equation (2.32). However, integration of the reference
dynamics (2.29) is still a nontrivial problem. The difficulty arises from the instability of

the dynamics in both positive and negative time directions.
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In this section, a numerical algorithm based on the minimum energy property of the
nominal control input (Theorems 5) is developed to provide an approach to compute
stable inverses. Without loss of generality we assume that the open-loop unforced dy-
namics of the systems (2.3)-(2.4) has been exponentially stabilized. See discussions in
Section 4.1 for reasons of this generalization. For simplicity, we also take a stronger
assumption as follows.

Assumption 6 The local linearization at the origin of the forward system (2.3)-(2.4)

is completely reachable.

3.2.1 Nominal control vs. optimal control

Instead of solving the corresponding two-point boundary value problem (2.29)-(2.30),
this numerical procedure tries to approximate the nominal control input u4 by a solution
of an optimal control problem minimizing control input energy over a finite time horizon
[fo. /], where g < &y, fo < to, and £; > t;. This optimal control problem is constructed
as follows:

Definition 2 (Optimal Control Problem [ (OCP I))

min _ J(u) = ||« |21, (3.23)

u€LB[lo.fg]

subject to

y = h(z), (3.24)

y(t) = yd(t)7 Vit e [{01 t-f]7

where yq is a prescribed output trajectory satisfying Assumption 2.

We claim that the Lo [fo,f7]-norm of the error between an optimal solution u* to
(OCP I) and the nominal control input uy can be made arbitrarily small provided that

to is chosen sufficiently small whereas #; sufficiently large.
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Lemma 1 Suppose Assumptions 1-6 are all satisfied. Then, there ezists a finite t, > 0

such that for all to < to —t, and t; >ty + t,,
u'(t) = ud(t), Vt € [{o, t-f] (3.23)

Proof: By Assumption 6 on reachability of linearization, we conclude that the nonlinear
system (2.3)-(2.4) is locally reachable near the origin £ = 0 [29]. That is, as long
as || z4(%o) ||z is sufficiently small, we have z4({y) is reachable from z(fy) = 0. The
smallness of || z4(fo) |2 can be ensured by both the property of exponential decay of
z4(t) as t = +oo (a consequence of exponential convergence of n4(¢)) and the selection
of ty to be sufficiently small, say {3 < ¢ — t, for a finite £, >0.
Define

S. = {u € LT[to, t7] | u(t) = ua(t), Vt € [fo.T/] }. (3.26)

The reachability of z4(%g) implies that there exists at least one u, € S, satisfying the

constraints (3.24) in (OCP I).

The fact u; € LT [to, ;] implies that there exists a finite §,, > 0 such that
| uz ”3:,[{0,{0] < 0. (3.27)

T (t2) = s 12, 50,21 < 8 + 1 wa I gty (3.28)

From Corollary 1 there exists a finite ¢,, > 0 such that (3.22) holds. Now choose
tu = max{tu,tm}. Then, for any #; < g — t, and &; > t; + ¢,, suppose u*(t) # uq(t) for
some t € [to,ts]. We in the rest of the proof aim to show that this assumption is not
true.

Because of constraint (3.24), u” is one of u;,, defined in Corollary 1. Thus, substi-

tuting u” into (3.22) we have

e 12 i) — ua 2oy > Om- (3.29)



Then,
J(@w) = u 2z 2 14 Voamoiy > Om + 1 wa 12,52, (3.30)
From (3.28) and (3.30) we conclude that J(u*)>J(u.;). However, this can not be true

since u* is an optimal solution. Thus, we must have
u”(t) = uq(t), VtE€ [to,1s]- (3.31)
0

From this lemma, u* and uy are shown to be identical over the interval [to, ]
Therefore, to establish the claim on closeness of u* and uq over [fo, t;], we only need to
show the closeness of u* and uq over interval [fo, fo).

By Lemma 1, the (OCP I) is reduced to the following optimal control problem which

minimizes the performance index J over the smaller interval [fo, Zo].

Definition 3 (Optimal Control Problem II (OCP II))

u:elg.r{.l';i[rt‘lo.t'o]‘z(ut) = || ue ”%z[t'o.t'o] (3.32)

subject to
£ = f(z) + g(z)us, z(fo) =0,

l‘(t-o) = .'L‘d(t—o).

(3.33)

The nominal control input u4 and optimal solutions to the two optimal control problems

(OCP I) and (OCP II) are related as follows:

ut(t) = = (3.34)

Lemma 2 Suppose Assumptions 1-6 are all satisfied. Then, given any 6, > 0, there

exists a finite ts > 0 such that ty < to — t5 implies

| u™ = wa 2 finto) < Ou- (3.33)
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Proof: When i, is sufficiently small, both || z4(Zg) ||z and || z4(0) ||z are small due to
their exponential convergence to zero as ¢ —+ —oo. Thus, dynamic constraint (3.33)
in the (OCP II) may be approximated by its first approximation at the origin. The
constraint (3.33) then reads as

= Ag.’B + Bg'llg, z(t.o) = 0,

] i (3.36)
z(to) = za(to)s
where
)
A = g(:’) _. and Bi=g(0). (3.37)

The analytical solution to this approximate linear optimal control problem with fixed

final state z(#y) = z4(fo) is given by

uj(t) = ~BleAP-1G (i, ko) [-’L‘(t—o) - eA‘[?o_‘-dl‘({o)]
= —BIeAT~1G=1({, fo)za(fo), Vt € [to, to]. (3.38)

where

- _ t
Glio, o) % [ o=t g BT AT gy,

to

Assumption 6 on system reachability guarantees the invertibility of G(fo, fp). By smooth-
ness of vector fields and functions of system dynamics, from (3.38) we conclude that there
exists a finite constant x; > 0 such that
u™(2) lloo = [ 27(t) lloe < &1l Za(t) lloor Yt € [fo, o). (3.39)
On the other hand, by smoothness of 571(0,74)a(0,72), the right hand side of equa-
tion (3.18), there exists a finite k; > 0 such that

” Ud(t) ||°° S "‘.‘2” TId(t) “001 Vit e [t-Os Z.li)]- (3.40)

Since both z4(t) and n4(t) exponentially approach zero as ¢ goes to negative infinity,
both || u*(¢) ||ec and || u4(?) || are also exponentially decaying by (3.39) and (3.40). The

conclusion follows immediately.
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3.2.2 An iterative approach to optimal control

In order to construct an optimal solution u* to (OCP I) to approximate uy. we take
an iterative approach. At each iteration step, the forward system dynamics (2.3)-(2.4)
is linearized along the solutions, both state and input trajectories, obtained from the
immediately previous step and then discretized. Let no and n; be the total samples
over intervals [Zo, ;] and [%o, {/] respectively. By a standard discretization approach. the
(OCP I) becomes:

Definition 4 (Optimal Control in Discretization (OCD))

ng
min Ju(u) =3[l uill; (341)
=1
subject to
Tiyr = Arze + Brur + Ex, Vk=1,...,n,,
I, = 07
< (3.42)
Ye = Crzi + Dk, Vk=mno—n, +1,...,n,
{ Ye = Ydgs Vk=no—n1+1 ..... ng.

It happened that this optimization problem has a unique solution and can be solved via

the Moore-Penrose generalized inversion approach [48] after some manipulations.
Rewrite the constraint (3.42) in (OCD) as follows by both evaluating output y at

each sampling time as a linear combination of u;'s and E;’s with j < k and setting

Yr = yai for all yx in the interval [¢g, f/]:

Ydpg = Cik[Br-ruk-1 + Ak—1Br2tk—2 + -+ + Ak-14sk—2... A2Biu|+
+Cx[Eroy + Ak Exca + -+ + Ak1Ak—z2 ... A2E1] + Dy, (3.43)
Ve=ng—n;+1,...,n0.
Let Yy be the column vector formed by stacking the yq.’s together, that is, yq is the

kth block row of Y;. Similarly, let U be the column vector obtained by stacking the uy’s
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together. Then, the set of n; equations of the form (3.43) can be written in a compact

linear algebraic matrix equation
Yi = MU + M;. (3.44)

It is noticed that there are more unknowns in U (dim(U) = ngm) than the number of
equations (dim(Yy) = nym) in (3.44). The well-defined relative degree guarantees that
the matrix M, has a full row rank as long as ng — n; > max{r,.....rm}. Therefore.

there are infinitely many U which will solve the equation (3.44) and the minimum energy

solution is given by

U™ = M}[Y; — Mp], (3.45)

where M is the Moore-Penrose generalized inverse matrix [48]. Then. forward time
simulation on the linearization of the forward system dynamics (2.3) using the computed
input U*, equivalently u*(¢), as a function of time, will generate the approximated state
z" of the current step. Simulation stops when the states computed in the adjacent two
steps are sufficiently close to each other.

When the sampling period is taken to be sufficiently small, the linear time-varying
system, the linearization of the original forward system dynamics, can then be viewed
as a time-invariant system within any one short sampling period. Thus, the computa-
tion of the transition matrices needed in obtaining the sampled-data systems in con-
straint (3.42)would be much simpler. This would greatly reduce the computing effort in
the discretization at each iteration. It is also noticed that all matrices in (OCD) can be
pre-computed for all £ once the linearized forward system dynamics is known.

The numerical procedure developed in this subsection is briefly summarized as fol-

lows:

o Step 1: Set z°(t) = 0 and u°(t) =0 for all ¢.



30

Step 2: Linearize the stabilized forward system dynamics along z°%(¢) and u°(¢)

and sample it to obtain (OCD).

Step 3: Derive the linear algebraic equation (3.44) and compute optimal solution

u” by (3.45).

Step 4: Integrate the linearized dynamics using u™ to obtain the corresponding

state trajectory z”.

Step 5: If ||z° — ||z, £,1 is greater than a given threshold, then set z%(t) = r*(¢)
eo[ 0y ]] gl'

and u°(¢) = u"(¢), go to step 2, else continue to step 6.

Step 6: Set the nominal control input uyg by the solution of step 3.
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CHAPTER 4 TRACKING CONTROL SYSTEMS DESIGN

The stable inverse pair (z4, uq) by definition solves the exact output tracking problem.
However, it is firstly noticed that for non-minimum phase systems, u, has to be applied
at ¢ = —oo which is practically impossible. Thus, left tail truncated inverse solutions
have to be used. Secondly, the nonlinear system may be unstable. Any perturbation
could result in divergence from desired values for those unstable systems. Therefore.

we are in this chapter exploring tracking control systems design incorporating stable

inverses.

4.1 Two Design Approaches

Up to now stabilization of a general nonlinear system is still an open problem. Only
for systems with certain properties or structures are there linearization based and Lya-
punov based stabilization designs. Anyhow. this is an independent topic of our system
inversion study. Given a nonlinear system of the form (2.3)-(2.4). we assume that a
stabilizing control law u = «(z) is known and it renders the origin of the closed-loop
dvnamics an exponentially stable equilibrium point.

By using u = ¥(z) + v, the closed-loop dynamics of the stabilized system is then of

the form

z = f(z) + g(z)v(z) + g(z)v, (4.1)

y = h(z). (4.2)
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It can be easily verified that the original system (2.3)-(2.4) and the stabilized sys-
tem (4.1)-(4.2) have the identical relative degree vector. Both systems share the same
coordinate transformation and have the same zero dynamics and reference dynamics.
These identity results lead to the observation: (z4,uq) is the unique stable inverse pair

for system (2.3)-(2.4) if and only if (z4,v4) is the one for system (4.1)-(4.2) where
vy = ug — 7(Z4)- (4.3)

From this observation, there are two equivalent approaches to our tracking control sys-

tems design as illustrated in Figure 4.1.

Vd + ud

——?—* P > P
l_ | S

¥(-) ()

()

Approach I Approach I
Figure 4.1 Two Equivalent Tracking Control Systems

The first design is that the nonlinear system is stabilized and then stably inverted to
obtain the stable inverse solution (z4,v4) for the stabilized system. The nominal control
input v4(t) is used to drive the stabilized system. This is Approach I. The second is
that the stable inverse pair (z4, uq) is computed based on the original system. Then the

controller assumes a structure of feed-forward plus feedback of the form
u = uqg +7v(z) — v(za)- (4.4)

This renders Approach II.

Clearly, tracking control systems via both approaches result in the same closed-loop
dynamics due to the relationship (4.3). Control systems with such closed-loop dynam-
ics achieve desired tracking performance with closed-loop stability. The performance

analysis is given as follows.
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4.2 Tracking Performance Analysis

4.2.1 Tracking error dynamics

We consider the case when the truncated nominal control input u, is applied starting

at {y = to — T. The closed-loop dynamics is then given by

& = f(z)+g(z)ua+v(z) —v(za)], z(to—T)=0, (4.5)

y = h(z). (4.6)
On the other hand, by definition of stable inversion we have

zq = f(zq)+g(zq)uq, z(—o0) =0. (4.7)

h(zq). (4.8)

I

Y4

In this subsection, we show the following two results. The error (z. e - z4) dy-
namics is exponentially stable at the origin provided that both ||zl ¢, (=cc.4+c) and
|| 24 || £ (~00.+00) are sufficiently small. The smallness requirement on the stable inverse
pair is equivalent to require the smallness of the reference output trajectory measured
by |[ €2 Il can(—o0.400) -

Lemma 3 Suppose Assumptions 1-6 are all satisfied. Then, there ezists a constant
me > 0 such that both || 4 ||z, (~m.+0c) < e @nd || ug || co(—co+o0) < Me imply that the

zero error is an exponentially stable equilibrium point of the error r.-dynamics.
Proof: Subtracting dynamics (4.7) from (4.5) we obtain the error dynamics
e = f(z) = f(za) + 9(z)[ua + 7(z) — v(za) ] = g(za)ua. (4.9)

Define
F(z)¥ f(z) + g(z)r(z). (4.10)



34
The error dynamics (4.9) can be regrouped as follows:
Te = F(ze + z24) — F(z4) + [g(ze + z4) — 9(za) |[ua — ¥(z4) |- (4.11)

By Taylors theorem,

OF(z.
doo= TEEI oy Offad?) + [glee + 2a) = gtz [ua— (za)]
= Aeze + Ac(zd)Te + o(”""ellz) + O(llzell)[ua — ¥(za) - (4.12)
where
4, 4 9F(@) (4.13)
Oz =0
and
y qsf aF(I) 6F(1‘)
Aza) = oz lmd— 0z |r=o (4.14)

with A(0) =0.
By the assumption that the origin of £ = F(z) is an exponentially stable equilibrium
point. from Theorem 12 (Appendix B), £ = A.z is also exponentially stable at z = 0.

Now for any given € > 0 there exists an m. > 0 such that || 4|z, (=co400) < Mes

” Uq ”Coo(-oo.-l-oo) <m.. a-nd ” Te ”Cm(-—oo.-{-oo) <me imply
| [Adza)z. + O(llz.?) + Oz fus = v ()|, < el ze(®) - (4.15)

Applying the converse Lyapunov theorem (Theorem 13 in Appendix B) and choosing ¢
accordingly, the exponential stability of the error dynamics (4.11) at z. = 0 follows from

a standard Lyapunov argument.

0

It is noticed that the tracking is only local. The smallness of the stable inverse
solution is required. However, we claim that the smallness requirement on the stable

inverse pair can be satisfied provided that the reference output is sufficiently small.
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Recall that given any reference output ys, the nominal control input us can be
regarded as the output of the stable inverse system. The stable inverse dynamics has

been derived in Chapter 2. For easy reference, we regroup them as follows.

fia = n(Ear a) + Bn(E2,12)B (Ear 1) 58" — (€a,7ma) |- (4.16)

Ud(to) € W+,
na(ty) € W,

ug = 874w a)[yS) — a4, ma) |- (4.18)

They are respectively equations (2.29), (2.30), and (2.32) in Section 2.2.
To establish the claim, we need the concept of transversality. a geometric notion

which deals with the intersection of surfaces or manifolds. Denote
np=n—[ri+r2+--+rn]. (4.19)

Then. W* and W* are differentiable manifolds in R™. Let n be a point in R™. W~
and W’ are said to be transversal at n if n € W* N W°; or if n € W* N W*, then
T,W¢ + T,W* = R™, where T,W* and T,W* denote the tangent spaces of W* and W*,
respectively, at the point 7. The two manifolds are said to be transversal if they are

transversal at every point n € R™".

Lemma 4 Suppose Assumptions [-6 are all satisfied and W* and W*° are transversal.

Then. given any € > 0. there ezists a § > 0 such that if || &4 || £ (~cot00) < O, then
ld llcos(=coto0) < € AR || Zd l| £on(-c0it00) < €- (4.20)

Proof: Consider the dynamics equation (4.16) with & = 0 (equivalently. the zero dy-
namics (2.28)):

T4 = aq(0,na) = Bn(0, 74)87"(0,7a)(0, 7a), (4.21)
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Since the stable and unstable manifolds are transversal, Assumption 3 on hyperbolicity
of the zero dynamics implies that the only point at which these two manifolds intersect
is the origin. Thus, the trivial solution n4 = 0 is the only solution to (4.21).

By continuous dependence of solutions on parameters, for any €; > 0, there exists a
8 > 0 such that for all ¢ > to if || £2(¢) [|eo < 81, then [[74(t) oo < €1-

Since z4 = ®71(&4,n4) is a local diffeomorphism and ¢-!(0,0) = 0, there exists a

constant k; > 0 such that

I
€a(2) -
| za(?) llo < &1 < max{ &1 &u(?) lloo: 1]l ma(t) oo }- (4.22)
na(t)
Similarly, continuity of u4(€;, 74) on both & and 74 and u4(0.0) = 0 (by f(0) = 0) imply

that there exists another constant x, > 0 such that
| wa() llee < max{ |l £a(2) lleos k2l Ma(t) [loo }- (4.23)

Now, given any € > 0, take
€

- - )
€1 < [na,x{h‘,hh‘,z} . (4...4)
Then. take 6 < min{d;,€,}. from (4.22) and (4.23) we have
lua(t) |lo <€ and, ||za(t)|le <€, Yt 2> to. (4.25)

Arguments over interval (—oo. tg] can be made by noticing the exponential decay to zero
of both u4(t) and z4(t) as ¢ =+ —oo. Taking the supremum over (—oo, +o0) completes

the proof.

4.2.2 Tracking by truncated control

Under Lemma 3 and the exponential convergence property of z4, we claim that the
control system (4.5)-(4.6) achieves asymptotic tracking and the so-called e-tracking. The

definition of e-tracking is given as follows:
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Definition 5 (e-Tracking I) Consider closed-loop system dynamics (4.5)-(4.6). Given

any € > 0, there ezists a T > 0 such that ||y — ya [| £oo(~c0+00) < E-

Theorem 6 Suppose Assumptions 1-6 are all satisfied. Then, the closed-loop dynam-
ics (4.5)-(4.6) achieves 1) asymptotic tracking, 2) e-tracking I. Furthermore. the tracking

errore = 0 as T — oo.

Proof: The asymptotic tracking follows directly from the exponential stability of error
dynamics and the smoothness of A( ).

To show the e-tracking, we apply the property that z4 exponentially decays as time
goes to plus or minus infinity. By this property and Lemma 3, there exist constants aj.

az, 81 and (5 such that Vi > tq — T

Ize(t) | < etz (24— T)|

aye Pl Tl 2y (2 — T) |

< af|za(te=T)||
< ajapef Tl (1) ||
= aql z4(to) le7?T. (4.26)
On the other hand, Vi < tq —T.
lze@®)l] = llza(t)]l < cze®l=tl| 2 (t0) ||
< Pl T=0l (ko) | = ol zalto) [T (4.27)

Thus, choosing T sufficiently large. inequalities (4.26)-(4.27) and the smoothness of A( )
guarantee that the e-tracking can be achieved.
Finally, the property of the output tracking error ¢ — 0 as T — oo can also be

concluded from these two inequalities (4.26)-(4.27) and the smoothness of A( ).
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4.2.3 Tracking under computing error

Tracking performance considering computing error is discussed in this subsection. Be-
cause solving for stable inverses involves numerical procedures, computing error always
exists. Therefore, instead of the nominal control input uy, an approximate solution 4y
will actually be used to output tracking. Now, it4 is truncated and applied at #p = to—T.
We claim that as long as the error between uy and 44 is small, a nice tracking perfor-
mance can still be achieved. Here we define another measurement of performance. the
e-tracking II.

Definition 6 (e-Tracking II) Consider closed-loop dynamics (4.5)-(4.6) with input uy
replaced by its approzimattion t4. Given any ¢ > 0. there exist T > 0 and § > 0 such

that || &g — ud || ceo(~o0.400) < & implies ||y — Yu || ceo(~o0.4o0) < €-

Theorem 7 Suppose Assumptions 1-6 are all satisfied. Then. the closed-loop dynam-
ics (4.5)-(4.6) with input 44 achieves e-Tracking II. Furthermore, the tracking error ¢

can be made arbitrarily small by decreasing || &g — Ud || £oo(=co+00)-

Proof: The proof is straight forward and it mainly follows from the conclusions of
Lemma 3 and Theorem 15.

The error dynamics now becomes
z. = f(z) = f(za) + g(z){ug + v(z) = v(za)] — 9(za)ua + g(z)[@a — ua].  (4.28)

where z % T+ Z4.

Consider term g(z)[iq — u4] as a perturbation to the nominal system (4.9). Since the
nominal dynamics (4.9) is exponentially stable by Lemma 3, if || tg — %a {|e (=00, 400) IS
not too large, then z.(t) is ultimately bounded by Theorem 15 (Appendix B).

It is noticed that the ultimate bound is proportional to the upper bound on the per-

turbation. Smoothness of A( ) implies that the output tracking error ¢ is also ultimately
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bounded. Thus, the bound on € can be made arbitrarily small be decreasing the bound

on perturbation, equivalently, on || &g — u4 || £o. (=0, 400)-

4.3 Robustness Analysis

Consider systems with uncertainties. Assume that the so-called “matching condi-
tions” are satisfied. Then all uncertain elements can be “lumped” and the closed-loop

system dynamics can be described by
z = f(z) + g(z)r(z) + g(z)v + g(z)A(z,¢), z(to —T) =0, (4.29)

y = h(z). (4.30)

In Section 4.2, by feedback control law (4.4) closed-loop system (4.1)-(4.2) without
any uncertainties has been shown to achieve desired tracking performance. For systems

with uncertainty A(z,t), we propose a modified control input as follows:
v =yt . (4.31)
Equivalently,
u = uq +v(z) —v(za) + vo. (4.32)

With the modified control input, the error dynamics becomes
Te = Fe(ze,t) + g(ze + 2d)10 + g(Te + Ta)A(Ze + 24, 1), (4.33)

where

-z, (4.34)

Ze
Fu(zet) € f(ze + 20) + 9(ze + 22)v(ze + Ta) = f(z2) — 9(za)V(za) +

[9(ze + z4) — g(z4) |va. (4.35)
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From Lemma 3 we have that z, = F(z.,t) is exponentially stable for small (zg4,vy).
Thus by the converse Lyapunov theorem (Theorem 13 in Appendix B), there exists a

C! function V/(z.,t) such that

crll ze(t) |7 < V(zest) < ol ze(2) |13, (4.36)
8V av
at a F (.’l.'e, ) —63” zc(t) ”g’ (4'37)

By assuming the knowledge of both the bounding function on uncertainty A(z.t)
and the Lyapunov function V(z.,t), we have robust output tracking control results as

follows.

4.3.1 Robust asymptotic tracking

The following theorem claims that with the knowledge of the bounding function on
A(z,t) and the Lyapunov function V(z.,t), output tracking with no steady-state error
can be achieved.

Theorem 8 Suppose Assumptions 1-6 are all satisfied and | A(z. +z4)(2) ||2 < p(z.,t).
Then, there exist ¢ > 0 and Bo > 0 such that the closed-loop dynamics ({.29)-(4.30)

achieved asymptotic tracking using

p(ze, t)
= - est ’ .
o= e e D+ e (438

where

T
p(ze,t) def gT(:z:, + z4) [g:] p(z.,t). (4.39)

Proof: Using V(z.,t) as the Lyapunov candidate, we have

. 3V ov
V = n 3 +—Fe(z.,t 61:, + za)vo + g(ze + 24)A(ze + T4) ]
3V :u(xe’t)
< “C3” Ic(t) ”2 - axeg(xe + Id)p(l?e,t)” y(a:,,t) ”2 T 606-6'3‘ + ” ,U(.’Be,t) ”2
‘50‘
= —call ze(t) I3 |z, ) lrcoe (4.40)

| #(ze, t) ||2 + coe=Pot”
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Because
b
0<——<a, Va,b>0,
a+b
we have
V < —cal| ze(t) || + ot (4.41)
That is,
0 < allz(t)3 (4.42)

< V(zet)

.

t
Vize(to = T)to=T)+ | _Vi(ze,)dr

to—

IN

col| ze(to — T) |I2 = /,:_

call ze(t) [ dr + e~ lto=T] _ g=5ot] (443
T Bo

From this we obtain the following two inequalities:

€
all ze(t) I3 < call zalto — T) [I3 + 5—‘;e“’°[‘°‘”, (4.44)
and
t
lim call ze(2) |2 dr < col| za(to — T) |2 + —2eGolto=T], (4.45)
t—00 to—T ﬁO

Thus z. € £L2N L. Since z. is also bounded, by the Barbalat’s lemma (Lemma 3 in

Appendix B) we have
lim z.(t) = 0. (4.46)

t—+co

o

4.3.2 Robust e-tracking

Assuming the same knowledge on A(z,t) and V(z.,t), the following theorem claims
that the output tracking error can still be made arbitrarily small for system dynamics

with uncertainty provided that the control input is applied sufficiently early.
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Theorem 9 Suppose Assumptions 1-6 are all satisfied and || A(z. +z4)(1) ||2 < p(ze.1).
Then, given any € > 0, there exist T > 0 and €o > 0 such that ||y — ya || £ (~c0.400) < €

can be achieved by

#(ze7t) "~
. 4.47
Te,t) |2+ €0 ( )

vo = —plze:

Proof: Following the argument in the proof of the previous Theorem 8 we similarly

obtain
V < —csl| ze(t) [I} + €o. (4.48)
Let 0 <0 < 1.
V < —c3(1 = )| ze(t) I — 30l ze(t) I3 + €0 (4.49)
Then.
V<= 0z F  Vizddl 2[5 (4.50)

By Theorem 14 (Appendix B), there exists a ¢, > tqg — T such that Vio — T <t < ¢,

1-0jc -
laell < [ Zhaetto - T lhexp { -5 22 - - 7p} ()
and V¢ > t,,
€oC -
| ze(t) [l < c10c320' (4.52)

The conclusion comes immediately following from the inequalities (4.51)-(4.52) and the

smoothness of A( ).
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CHAPTER 5 OUTPUT TRACKING CONTROL OF A
FLEXIBLE-JOINT ROBOT

The most elementary task in robot control is to drive the end-effector of a robot arm
to follow a given desired trajectory. Precise positioning and appropriate speed control of
the end-effector along a given path are key requirements in many industrial applications
such as arc welding, spray painting, pressure casting, tool machine serving. assembling,
and thermal treatment processing. All of these applications demand good designs on

output tracking controllers for various robotic systems.

5.1 Introduction

Design of output tracking controllers for non-minimum phase nonlinear systems is
highly challenging. Among existing methods the nonlinear regulation approach leads
to possibly large transient errors whereas the classical inversion approach results in
unbounded internal dynamics for non-minimum phase systems. In this chapter, a new
stable inversion based design approach developed in Chapter 4 is applied to output track-
ing control for a flexible-joint robot system. It aims at demonstrating the effectiveness
of the design for non-minimum phase nonlinear systems.

The robot system studied in this chapter is a single robot link attached to a wobbly
platform with a flexible joint. It is a design example from a recent book by Freeman and
Kokotovic [23]. The system is also discussed in Freeman’s PhD dissertation [22]. By

neglecting the rotational motion of the platform, model reduction had been carried out
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by the singular perturbation technique which renders a reduced-order minimum phase
system. Based on this minimum phase system, an input/output linearization design
leads to an asymptotic tracking controller with full-state feedback. The full-state feed-
back requirement can be dropped by using an observer based controller. Backstepping
technique had also been used to design a partial state feedback output tracking con-
troller. All design approaches discussed are based on an approximate model which is a
minimum phase system.

The design using stable inversion is directly based on the complete model even though
it is of non-minimum phase. Forward system dynamics of this robot system is devel-
oped in Section 5.2 using the Lagrange’s method. In Section 3.3. following the general
framework of stable inversion reviewed in Section 2.2, a stable inversion problem for this
specific robot system is defined and it is followed by construction of the stable inverse
solution to the problem. Section 5.4 applies the Approach II developed in Section 4.1 to
design an output trajectory tracking controller that incorporates stable inverses. Simula-
tion study demonstrates the effectiveness of this approach in achieving excellent output

tracking for non-minimum phase systems.

5.2 Forward System Dynamics

5.2.1 System configuration

Consider the robot system shown in Figure 5.1. It contains a single link (L) attached
with a flexible joint to the rotor (R) of a motor mounted on a platform (P). The platform
is attached to a fixed base (B). It is assumed that there is no motion in the vertical
direction. Thus, only the motion in the horizontal plane will be considered and modeled.
There are five degrees of freedom in the system: linear displacement (z,, y,) and angular

displacement 8, of the platform, angular displacement 6. of the rotor, and angular
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displacement 6; of the link. The three angles 8,, 8., and 6; are measured with respect to
the X-axis as shown in Figure 5.1.

We assume that the point (z,,y,) is the center of mass of both the platform and
the rotor. We also assume that the platform is subject to linear and angular restoring
forces proportional to its deviation from an initial position, and the link is subject to an
angular restoring force proportional to its deviation (6; — 8,) from alignment with the
rotor. All motions are also assumed to subject to viscous friction forces proportional to

their velocities respectively.

LINK(L)
)
MOTOR (R)
PLATFORM (P
=

FIXED
BASE (B)

Figure 5.1 Flexible-Joint Robot with Wobbly Platform

The angle of the link relative to the platform. §; — 8,, is defined as the system’s
output whereas u, the torque generated by the motor, is the control input. The system

with parameters listed in Table 5.1 is utilized as the physical model in this study.

5.2.2 The Lagrange’s method

To apply the Lagrange’s method (3], the kinetic energy of the whole system containing

three bodies (platform, rotor and link) is firstly found as follows:
. 1 . . : .. . | 1 . | =
KE = §M[:z:§ + 3] + mrobi| —z,sin 6 + yp cos ;] + 5[;0,2 + 51,03 + 5[,0:. (5.1)

Secondly, the total potential energy stored in all springs is given by

(W1]
o

PE = -:)-kl[:rf,+y§]+-§k29§+§k3[9,_9r]2_ 5.
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Table 5.1 Parameters for the Robot System in SI Units

M(5.0kg)
m(0.5 kg)

7‘0(0.3 m)

[,(0.6 kg m?)
I.(0.05 kg m?)
I,(5.0 kg m?)
k1(2600 N/m)
k2(2960 N/rad)
k3(8.0 N/rad)
b;(14.0 N s/m)
b2(15.0 N s/rad)
b3(0.04 N s/rad)
b4(0.007 N s/rad)

total mass of L, R, and P

mass of L

distance from L-center to (z,,y,)
moment of inertia of L w/ (z,,yp)
moment of inertia of R w/ (z,,y,)
moment of inertia of P w/ (z,,y,)
linear spring const btwn P and B
angular spring const btwn P and B
spring const btwn L and R

linear friction coef btwn P and B
angular friction coef btwn P and B
friction coef btwn L and R

friction coef btwn P and R

Let

be the system'’s generalized coordinates. The Lagrange’s equation is given by

¢ (25, yp. 01, 6,-.0,]7

doL_oL_
dtgy O 7

(5.4)

where L = A'E — PE is the Lagrangian and F; is the generalized force including motor

driving force and viscous friction forces. Substituting (5.1). (3.2), and (5.3) into the

Lagrange’'s equation (5.4), the left hand side of the equation yields:

d dL

dt 9z,
d oL

aL

9z,

Mz, - mro[éz sin §; + 9,2 cos 6] + kyz,,

M, + mro[8; cos 8 — 6?sin 6, ] + kyy,,

1,6, — mro[ Z,sin 6, — §, cos 6]

+k3[8: — 6, ] — mrofi[ £, cos B + g, sin b, ],

Irér - ks[ef - 0,- ]7

1,0, + k,8,.
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The Lagrange’s equation thus yields the following system dynamics:

Dynamic equations in (5.11) can be written in a more compact form (3.12).

L6, - mro[Z,sinf; — §ocos ;] + bs[ 61 - 6, ]

LG, + b0, + k20, — by[6, — 6,] = —u.

( Mz, — mro[éz sin§; + 9;2 cosOr] + bz, + kyzp, = 0.

My, + mro[éz cos §; — 0? sinf;| + by, + k1y, = 0,

I.6. = bs[ 61— 6.] — k[0 — 0. ] + ba[ 6. — 6,] = u.

+k3[0i—6,] — mroél[:i:p cos b+ ypsin ;] = 0.

(5.11)

Together

with the definition of system’s output, the forward dynamics of the robot system is then

given by

My ()6 + H(b,¥) + Mot + Maw = B,u.

where

The inertia matrix M;(¥) is given by

M(v) =

y = h(v).

h(v) ¥ 6, -0,

M
0
—mrgsiné,
0
0

0

M
mrg cos 6,

0

0

—mrgsin 8,
mrg cos 6,
I
0
0

0
0
0
I,

<

0

o O o o

-

The centrifugal/Coriolis term H (u’xzp), the damping matrix M,, the stiffness matrix

M3, and the torque distribution matrix B, can all be directly obtained from dynamics

equations in (5.11).
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5.3 The Stable Inversion Problem

The forward dynamics (5.12)-(5.13) of the robot system can be written in the fol-

lowing state-space form:

¥ =1,
¥ =M (W) H($,¥) + Moty + Mstb ] + M (¢) Buu,

(5.16)

y = h(¥). (5.17)

Being an inertia matrix, M; is symmetric positive definite and thus M ! is well-defined.
It is noticed from this form that this single-input single-output nonlinear system is
affine in its control input. Furthermore. the right hand sides of both dynamics and
output equations are smooth on (v.%). Thus, it fits into the general framework of
the stable inversion problem described in Section 2.2. Following the procedure in that
framework, we define the stable inversion problem for the robot system (3.16)-(5.17) as
follows: Given any smooth reference output trajectory yq whose first-order derivative y4
having compact support on [to.t;]. find a bounded control input uq and a bounded state
trajectory (¢4,§2’4) such that uq — 0 and (¥q, &d) — 0 ast = +oo and their image by

the input/output map of the control system (5.16)-(5.17) is exactly yq.

5.3.1 Inverse system dynamics

In order to solve the problem to find the stable inverse pair uq and (¥q, ¥4), we again
follow the procedure described in the stable inversion framework. Firstly, we compute

the time-derivatives of the output until the input u appears explicitly:
§ = s~ s, (5.18)

§= o, %) + T (519)
P
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where the expression of a(i,%) can be obtained after some algebra from the forward
dynamics (5.16)-(5.17). It is clear from equation (5.19) that the system has a well-defined
relative degree r = 2.

Secondly, a coordinate transformation is made. In addition to the output and its

first derivative, we also choose all the flexible modes of the system
7 (2, Yp, 00 — 6., 6,17, (5.20)

together with the first derivative 7] as the new set of coordinates. The linear independence
of the selected coordinates can be easily verified. It turns out that the transformation

is linear and can be written as follows:

T yj
I ,'77] =M,| |. #eR* (5.21)
v
The transformation matrix M, is given by
1‘/[4,1 0
0O M
M, & °t (5.22)
l‘/[¢2 0]
0 l"[¢2
where
Ma=10010 —1], (5.23)
and _ -
1 00 0 O
w1010 0 O
A’Iég = (524)
001 -1 0
000 0 1

Set y = yq4. Solving for u from equation (5.19), we obtain the output equation of the

inverse dynamics

u=1l,[ja— (v, ¥)],

—~
e
(]
(o]

S—
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The system dynamics under the new coordinates is given by

Y = Yd,
Y= Yd,

¢ 77 (5.26)
n=1,

{ ;-7 = ﬁ(ydv gdv gdv 777 ﬁ)

A convenient way to find the expression for #( ) is to derive it directly from dynamic
equations (5.11). Adding the last two equations in (5.11) together and substituting 6,

by 0, + yq yield
Mz, — mro[0, + §a]sin(6, + ya)
+mr0[ép + ya | cos(6, + ya) + i, + krzp, = 0.

My, + mro[ép + Ya]cos(b, + ya)
—mro[ 6, + Ya | sin(8, + ya) + b1y + K1y, = 0,

\ L8, + 4] + mro[ %, sin(8, + ya) + §p cos(8, + ya) ] (5.27)
—m"o[ép + Ya |[ £p cos(0p + ya) + Ypsin(b, + ya) ]
+b361, + k3 = 0,
[+ [,]6, — L6 + L§a — b6y, + 526,
L —k301r + kzo,, = 0,
where
61 = 6, — ;. (5.28)

Equation (5.27) is the equivalence of the last two equations in (5.26) and it is the
reference dynamics in its state-space form. In addition, by setting y4(t) = 0 in the

reference dynamics, it becomes the well-known zero dynamics [29]:

=
il
31

?

! ' (5.29)
n= ﬁ(ov 0,0, 7, ﬁ)



5.3.2 Stable inverse solutions

Using parameters in Table 5.1, eigenvalues of the linear approximation at the origin
of the zero dynamics (5.29) are calculated as shown in Table 5.2. Hyperbolicity of the
equilibrium point at the origin can be easily seen since there is no eigenvalues with
zero real part. It is also noticed that this system is of non-minimum phase due to the
existence of two unstable eigenvalues to the linear part of the zero dynamics. By the
theory of differential equations [63], locally near the origin there exist a stable manifold

W* of dimension six and an unstable manifold W* of dimension two.

Table 5.2 Eigenvalues of Linearized Zero Dynamics

—1.40 + j22.76 | —1.41 £ j22.82 | 6.12 + j29.84 | —9.91 & j27.47

Consider the following two-point boundary value problem:

1 = D(Yds Yd» Gds 7> 1) (5.30)
subject to

(i(to), 7(ta)) € W,

(7ilts), (2 s)) € W
The boundary condition (5.31) requires that at ¢ = ¢, the desired internal dynamics
should stay inside the unstable manifold whereas at ¢ = ¢ stays inside the stable mani-

fold.

Recall two theorems stated in Section 2.2. Theorem 2 claims that the two-point
boundary value problem (5.30)-(5.31) locally has a unique solution (74,7,) and Theo-
rem | claims that the stable inverse pair can be constructed from (4, ;) through inverse

transformation (5.21) and inverse dynamics output equation (5.25):

u,yd -1 . - =T T
. = Md, [ Yd Yq 17d 17d ] . (5.32)
Uq



(1]
(8]

and

ug = I [ §ia — o(ta, %) | (5.33)

5.4 Output Tracking Control

In this section we first compute the stable inverse pair by solving the two-point
boundary value problem (5.30)-(5.31) and utilizing equations (5.32)-(5.33). Then, a
tracking controller is designed by using the stable inverse solution to drive the link to

track a prescribed reference trajectory.

5.4.1 An approximate stable inverse

Let the desired output trajectory be defined as follows with {3 = 1 second and ¢; = 2

second:
0’ t g t07
Ya =14 2[t—to] —mtsin(27[t — to]), to <t <ty (5.34)
21 t > tf.

To find the stable inverse pair ug and (wd,;&d), two numerical algorithms could be
used. One is aimed at solving the two-point boundary value problem by decoupling sta-
ble/unstable manifolds. See Appendix A for details. Another is by solving an optimal
control problem minimizing control input energy that is developed in Section 3.2. In-
stead of carrying out those algorithms, we choose in this example to solve the two-point
boundary value problem (5.30)-(5.31) simply by “decoupling” the stable/unstable man-
ifolds via a linear coordinate transformation. Thus, only an approximate stable inverse
solution is computed. Details are as follows.

Rewrite the differential equation (5.30) in the two-point boundary value problem in

the following state-space form:

-3
B ]

Ay | | + R(yd> Yd> Ga, 7> ) (5.35)

P ]
—
B ]



where

R(0,0,0,7,7) = O(| (@, 2) I*), (5.36)
and A, is the first approximation of the zero dynamics (set yg4 = 0 in (5.30)) at the
origin. From elementary linear algebra, there exists a linear transformation

] 21

= My (5.37)

22

=3

which transforms equation (5.35) into

él = Azlzl + R:l(yd’ yd’ gd» <1, 52)’
(5.38)
2.'2 = Az232 + RzQ(yd? gdv gda 21, 32)7
where both A., and —A,, are Hurwitz. Recall that the boundary condition (5.31)

requires that at ¢o the (7,7) stays in the unstable manifold whereas at t; stays in the

stable manifold. We approximate the boundary condition simply by

Zl(to) = 0,

z2(ts) =0,

(5.39)

because, roughly speaking, 2, and z; pick up the stable and unstable parts of the zero
dynamics respectively. The approximate stable inverse pair is then obtained through

the following iterative steps:

o step 1: Set z9(¢) = 0 for all ¢.

e step 2: Integrate the unstable part of equation (5.38) from ¢t = ¢; to ¢ = 0 backward

in time with final value z;(¢;) = 0 to obtain 2,.

e step 3: Integrate the stable part of equation (5.38) from ¢ = t5 to t = 3 second

forward in time with initial value z(fg) = 0 to obtain z;.

o step 4: If ||z; — z0|| is greater than a given threshold, set =) = z; and go to step 2,

otherwise continue to step 3.
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e step 5: Use transformation (5.37) to find an approximate solution (74, 7).

e step 6: Construct (zbd,zbd) via equation (5.32) and uy through (5.33).

5.4.2 Tracking control designs

Using only 8, — 6, and 8, — 8,, the measurements of rotor position and rotor velocity
relative to the platform, controller incorporating stable inversion by the Approach II is
simply designed as follows: use u4 as a feed-forward signal that is superimposed by a

PD stabilizing feedback:
() = "ap[or - op] - ad[ér - 0;;] (5.40)

The input/output map from u to 8, — 8, can be verified to be of minimum phase. The

closed-loop stability is thus guaranteed [10]. The overall control law is given by
u = ug— ap[ (8, — 0,) — (0, — 8,)a] — aa[ (6: — 8,) — (8- — 8,)a], (5.41)

where a, and a4 are two design parameters. It is noticed that the measurements of
(0 — 05)a and (9, - 9,)4 can be easily implemented by installing an encoder on the
motor.

Forward simulation starts from ¢t = 0.5 second with a rest initial condition. Simu-
lation results using e, = 30300 and ay = 1616 are shown in Figure 5.2. It is seen from
the upper part of the figure that the excellent tracking performance by this controller:
there is neither transient error nor steady-state error in tracking. The lower part of the
figure shows the bounded computed stable inverse u4. It is seen that even though the
output trajectory starts moving at ¢ = {; = 1 second and stops at ¢t = t; = 2 second, the
control needs to be applied to pre-shape the system some time before ¢y and it is also

in effect after t; for a period of time. This is due to the non-minimum phase property
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Figure 5.2 Tracking Performance and Nominal Control

of the system.

It is interesting to notice that in this robot system the angular motion, (8,.6,), of the
platform is rather small. By neglecting this motion the system may be approximated by
a minimum phase model with its order reduced by two. See [22] for a detailed description
of the model reduction and a corresponding input/output linearization control design.
Simulation results by this input/output linearization approach are shown in Figure 5.3.
It is noticed that this input/output linearization tracking design based on the reduced-
order minimum phase model also achieves output tracking with a satisfactorily small
tracking error. However, it is also noticed that this method, unlike the stable inversion

approach, requires a full-state measurement for feedback.

5.5 Conclusions

Stable inversion, an approach to the design of output tracking control for nonlinear
non-minimum phase systems, is successfully applied to output tracking of a single-link

flexible-joint robot system. The key assumptions, a well-defined relative degree and hy-
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perbolicity of the fixed point of the zero dynamics, in applying stable inversion based
controller design are both satisfied by this system. Simulation results demonstrate that
this stable inversion based approach is very effective for obtaining accurate output track-
ing with only partial state measurements for this non-minimum phase system.

It is interesting to notice that both the stable inversion based design and the in-
put/output linearization based design achieve remarkably accurate output tracking. This
is due to the small rotational motion of the platform. It is this motion that contributes to
the non-minimum phase property. Thus, the robot system has a “weak” non-minimum
phase property. The weakness means that the unstable zeros are located farther away
form the imaginary axis than other system zeros. This can be seen from Table 5.2 where
two zeros with position real part are introduced by platform’s rotational motion. In such
case, neglecting motion that renders non-minimum phase property could possibly result

in a satisfactory control design.
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CHAPTER 6 TIP TRAJECTORY TRACKING OF A
TWO-LINK FLEXIBLE MANIPULATOR

Stable inversion provides a promising design method for output tracking control. In
this chapter, the stable inversion based design is applied to tip trajectory tracking for a
two-link flexible manipulator. While last chapter considers flexible-joint robot, the robot
studied in this chapter undergoes link deformation due to its flexibility. The controller

takes the structure of the Approach II proposed in Chapter 4.

6.1 Introduction

Stable inversion based output tracking of a multi-link flexible manipulator is a model
based control which requires a detailed, carefully predetermined dynamic model of an
actual system. Equations of motion of a flexible manipulator are mixed partial and
ordinary differential equations which contain terms in the integral form [59]. With
few exceptions, closed form solutions of partial differential equations are not practical.
Therefore, motion prediction usually relies on approximations made by a set of admis-
sible space functions. These shape functions may be obtained analytically by using
the mode shapes of a fixed-free cantilever beam [8]. When obtained numerically, the
shape functions can be found by the finite element technique. For example, a method
that utilizes the eigenvectors obtained from the finite element analysis as approximation
functions was developed by Sunada and Dubowsky [60]. The assumed modes method,

which will be used in this study, is another way to obtain the shape functions numeri-
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cally. The approach by the assumed modes technique has been used extensively in the
research of the flexible manipulators [37].

The study on control of flexible robot manipulators was pioneered by Cannon and
Schmitz [8] in 1980s where a linear-quadratic optimal control approach was successfully
applied to the end-effector tracking control of a one-link flexible robot arm in which the
non-minimum phase effect was first demonstrated. After that, many researchers have
considered different approaches to the control of one-link flexible arms which are linear
systems for small deflection. Among those, Siciliano and Book [52] used a singular per-
turbation approach to deal with the flexible modes. Bayo [2] applied Fourier transform
to obtain stable but non-causal control input. As for the nonlinear control of multi-link
flexible manipulators, Lucibello and Siciliano [15] applied the nonlinear regulation theory
and asymptotic tracking of periodic output trajectories was achieved. Simulation results
demonstrated asymptotic tracking of a finite trajectory with transient errors existing at
both the beginning and the end of maneuver.

This transient behavior can be precisely controlled by applying the classical inversion
method that uses stabilizing feedback together with feed-forward signals generated by
an inverse system. Conditions for the invertibility of linear systems were developed by
Brockett [6], Silverman [53], and Sain [51] while for nonlinear systems were established
by Hirschorn [26] and Singh [54]. All these inversion algorithms produce causal inverses
for a given desired output and a fixed initial condition, but unbounded control and
state trajectories will be produced for non-minimum phase systems. This fundamental
difficulty has been noticed for a long time.

The new tracking control design incorporating stable inverses avoids difficulties in
both nonlinear regulation and classical inversion while preserves the advantages of both.
Section 6.2 develops a mathematical model for a two-link flexible manipulator using
the assumed modes technique with tip position as output. From that, in Section 6.3

an inverse model is derived and the two-point boundary value condition corresponding
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to stable inversion is set up. In Section 6.4, conditions for applying stable inversion
are verified, and the effectiveness of stable inversion to output tracking for such non-
minimum phase systems is demonstrated by comparing favorably against a carefully

fine-tuned computed torque method.

6.2 Equations of Motion of Flexible Manipulators

For rigid-body mechanical systems, the dynamic modeling is well understood and
easily handled by the Lagrange’s principle [49]. So is the case for single-link flexible
robot arms [36]. However, the dynamics of multi-link articulated flexible structures is
significantly more complicated. Some researchers have used finite element method to
numerically construct the dynamic equations [3]. Others have used the assumed modes
approach [3, 14]. The modeling approach for multi-link flexible manipulators provided
in this section is compact and self-contained. It follows the Lagrange’s principle using
the assumed modes technique. We believe that our treatment is especially easy to follow

for those without any mechanical engineering background.

6.2.1 The assumed modes approach

A robot is often considered as an assembly of several rigid links. However, the
assumption may lead to unsatisfactory performance if the links of the robot undergo
elastic deformation. In such cases, a basic link is generally modeled as composed of
a flexible beam with a rigid hub at the base end and a point mass at the opposite
end. For multi-link robot arms. the links are connected with joints at their ends. The
joints of the arm are considered to be revolute and input torque is applied at these
joints. Each flexible beam is assumed to satisfy the Euler-Bernoulli beam assumption.

The deformation in the axial direction and the thickness of the beam itself are both
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neglected. We also assume that the links are maneuvered in the horizontal plane and
the out-of-plane deflection is negligible.

Notations for physical properties of each link are as follows. Suppose that each link ¢
has total length /;, mass per unit length p;, product of area moment inertia of the cross
section about the neutral axis and Young’s modulus e;. The end tip mass of link 7 is
denoted as m,, and the mass moment of inertia of this portion of the link is assumed to
be negligible. For the other end, #;, stands for the inertia of the rigid hub.

To introduce the Lagrange’s method using the assumed modes technique, let us first

consider a basic flexible link that is shown in Figure 6.1.

Figure 6.1 Model of A Basic Flexible Link

Let €, be the unit vector in the tangent direction of the link and €, be the unit vector
perpendicular to €.. Then, the position of any point along the beam can be written as
follows with 7, and 0} being the position and velocity of the hub relative to the ground
reference frame,

T, =Ty + Z+W=ry+ z€; + w(z,1)€y, (6.1)

where z measures the distance between the point and the hub in €, direction and w(z, t) is

the deflection along %, of the elastic beam measured from its undeformed configuration.
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Differentiating (6.1) with respect to time, the velocity of any point along the beam is of

the following form

-

3 =5 + 0 x £+ 1, (6.2)

dy

where 8 is the angular velocity of the rigid hub measured with respect to the inertial
frame and the symbol “x” represents vector cross product.
Using this expression (6.2), we can write the kinetic energy of a flexible link of length
[ as follows:
- 1 . '2 ]. { - - -
KE = 1,0 +—-/ P U; - U;dz, (6.3)
2 2Jo
where “” stands for inner product. p* & p(z) + m.8(z — [), and &() is the Dirac delta
function. Assume the potential energy contains only the elastic energy part while the
gravitational potential energy is neglected. The potential energy of the flexible link can

then be computed by
1 l ”
PE=;/eM(;ﬂP@, (6.4)
2Jo
where (-)" denotes the second derivative of (-) with respect to its spatial variable. The
Lagrangian of the flexible link is the difference between the kinetic energy A'E and the
potential energy PE:

L=KE - PE. (6.5)

When a multi-link flexible arm is considered, the Lagrangian of the whole system is
obtained by summing up the Lagrangian of all the individual links of the flexible arm.

Now, by the Lagrange’s method, the equations of motion can be expressed as

4oL oL F, (6.6)

& 90 EM =1ry,
where v is a set of generalized coordinates for the system, and F’ is the generalized force
acting on the generalized coordinates.
Equation (6.6) is a set of partial differential/integral equations. To simplify, assumed

modes [38] can be invoked to approximate the links deformation. In the approximation.
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a set of admissible functions are chosen so that they are linearly independent and satisfy
all the geometric boundary conditions of the system. They must also be as many times
differentiable as the number of the boundary conditions. Accuracy of the approxima-
tion can be improved as the number of admissible functions chosen to approximate the
deformation increases.

Let oij(z:) be the jth admissible function of the :th link and ¢;;(¢) the corresponding
generalized coordinates. Then the distributed deflection of the :ith link. w;(z;.t). is

approximated by

wi(zi t) = ) 0(2:)gi;(t) EoTq.. (6.7)

i=1
In this study, two flexible modes are assigned to each link: n; = 2. The admissible
functions are chosen to be the ones for the clamped-free beam [37]. One simple choice of
the admissible functions that meet the above mentioned requirements are those of the
form:
2

Jj+1 )
oij(z:) = [l-] , Vi=1,...,n;. (6.8)

The geometric boundary conditions are all satisfied since the polynomials in (6.8) always

have 0;;(0) = 0':-]-(0) =0.

6.2.2 Manipulators with two flexible links

The two-link flexible manipulator shown in Figure 6.2 is modeled as follows. The
rotation angle 6, of link one is the angle between the tangent direction of the link and
the horizontal axis of the ground reference frame. The angle 8, is the joint rotation of
the rigid base on the second link measuring the tangent direction of this link from the
tangent line at the end-tip of the first link.

Let 7} and 7, be the position vectors of a point on link one and link two respectively.

Then,

r = 315:1 + wlé'wl, (69)
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Figure 6.2 Two-Link Flexible Manipulator

T2 = héy +wi(h)ey, + 226, + waku,, (6.10)
where [, is the length of the first link. The velocity vectors can be obtained by
51 = [216; + 1 6wy, (6.11)
T2 = (L6 +un(ly)]8uw, + [22[61 + 02 + by (L)] + w2 ]Eus. (6.12)
Note that different symbols have been used to separate the derivatives with respect to

time ¢ and those with respect to spatial variable z;. The squares of the magnitude of

the velocities are then found as follows:
Bt = [26 + i L (6.13)
Up-Up = [1191 +un(h)]* + [32[91 +6; + w;(ll)] + 1w, )?
+2[ 2561 + b + Wy ()] + w2 |[[161 + w1 (L1)] cos(8z + wi(ly)). (6.14)
Thus, the potential and the kinetic energy of link one and link two are given by
1 i "9 1 T h " 2%
PE, = 5/0 elfw,) dz = 5% /0 ei[oy][o)]" dz1| g1, (6.15)

1 {2 ” 1 l2 " "
PEQ = -5‘/0 62[w2]2 de = §q2T I:/(; 82[0’2][0’2]T de] q2, (6.16)
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1. . L . . -
KEI = §zblﬂf + ;A p{vl - dzl. (6.1!)
].. n A .t 2 1 Il - - —
KE, = 5152[01 +62 + wl(ll)] + ;/0 PRU2 - VU2 dz,, (618)

Clearly, both PE, and PE, are quadratic functions of q; and ¢, respectively. Noticing
that w; = aiT ¢: and w'1 = [a';]Tch, we see that both A'E; and K F, are quadratic functions
of 0'17 éZ’ q.l and 42-

Denote the system’s generalized coordinate

def

v = [67,¢5 ] d‘—'if[91~,az,qu,¢112’f121’<122]T- (6.19)

The potential and the kinetic energy of the system can then be written as

PE = PE, + PE; = ~4"Kv. (6.20)
KE=RE,+RE;, = ézz}TM(w)u}, (6.21)

where M (%) is the system inertia matrix. A’ is the stiffness matrix of the form

[\' ciéf O2x2 O2x4 ’ (6.22)
O4x2 Z‘/[;;
R (6.23)
3 — 9 o
] O2x2 A’22x2

where R'! and A are the kernels in equations (6.15) and (6.16) respectively. Substituting
(6.20)-(6.21) into (6.6) we obtain

(LT M(¥)¥)

M)+ M) - 37 O 4 K6 = B — R, (624

where u = [u), u5|7 is the vector joint torque, B, = [I2x2,O2x4]T the torque distribution
matrix, and Fy is the Rayleigh dissipation force due to structural damping of the flexible

links and is assumed to have the form

Fy=Cq, (6.

(8%}
(31
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where C is taken to be proportional to the stiffness matrix A" by a damping ratio ay:

C = 02x2 O2x4 ’ (6.26)
04x2 M2
where
M, =a M. (6.27)

Defining the term which involves centrifugal and Coriolis forces

def vy 1 OWTM(9)d) g
H(¢,v) = M(¥)y — 5 6o (6.28)

we obtain the system dynamics from equation (6.24)
M) + H(w,¥) + Cé + Kt = Bu. (6.29)

There are many ways to choose the system output. Depending on which points along
the links are selected as output, the whole system can be either minimum phase or non-
minimum phase. If the output is selected to be the joint angles. i.e. the sensors and
actuators are collocated, the system is known to be minimum phase. A more meaningful
choice of output is the tip position and this choice renders the system non-minimum

phase. In this study, we choose

T
v=[y,y)  =[6.6:]T + [a.rctan (-ui(illilﬂ) ,arctan (wi(ll:—’i)-) ] . (6.30)

When elastic deformation of the first link is small, the output y is approximately the tip
angular positions of the links. It can be seen that both output components chosen are

practically measurable. For small elastic deformation,

wi(l;, t)) . wi(li,t) (6.31)

T ‘

L

arctan (

By substituting equation (6.7) into equation (6.30), we obtain the simplified output

equation

y = D, (6.32)
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where D = [Dl Dg] with D1 = [2x21 and

ITlo () T ea(l 0 0
D, = Lou(l) T o) . (6.33)

0 0 I3toa(l2) 7'oxn(l2)

System dynamics equation (6.29) together with its output equation (6.32) constitutes

the forward system dynamics of the two-link flexible manipulator system.

6.3 Stable Inversion of Flexible Manipulators

To design stable inversion based output tracking control, inverse dynamics needs
to be constructed. Based on the inverse dynamics a stable inverse is found for any
given output trajectory. The boundedness and the convergence of the stable inverse are
guaranteed by setting up a two-point boundary value problem which is then solved in

this study by following the iterative procedure described in Appendix A.

6.3.1 Inverse dynamics

Inverse dynamics usually consists of reference dynamics (2.25) and an (inverse) out-
put equation (2.24). For a flexible manipulator system, the inverse dynamics can be
simply derived as follows.

Partition and rewrite the forward dynamics (6.29) and (6.32) as follows:

Mu(l[’)é'{- My (¥)q + Hl(d)ﬂj’) =u, (6.34)
Moy ()6 + Mag()§ + Ho(,%) + Mg + Mag =0, (6.35)
y = 6 + Daqgq, (6.36)

where D, is defined in (6.33) and M, and M3 are defined in (6.27) and (6.23) respectively.

From (6.36), we have
0 =y — Daq. (6.37)
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Let yq4(t) be the reference output trajectory. Set y =yq4. Substituting (6.37) into equa-

tion (6.35), we obtain a dynamic equation governing the flexible coordinates g¢:

Mi(yd,9)q + Mag + Msq + H2(ya, Ja, 9, 9) = Ma(ya, 9)¥a, (6.38)

where
Mi(ya,q) = M22(ya, q) — M21(ya, q) D2, (6.39)
My(yd. q) = —Ma(yd. q)- (6.40)

Equation (6.38) is the reference dynamics equation (2.25) in second order form.
The equivalence of the general inverse output equation (2.24) for the flexible ma-

nipulator can be easily obtained from equation (6.34) with a substitution of (6.37) and
Y=ya:
u= [ Ml?(ydv Q) - Mll(ydv Q)Dz ] é + [ 1‘/111(3/!17 Q)gd + Hl(ydv gd? 9, Q) ] . (641)

Equations (6.38)-(6.41) characterize the inverse dynamics of the two-link flexible manip-

ulator system.

6.3.2 Linear two-point boundary value problems

To ensure a stable solution from the inverse dynamics, a two-point boundary condi-
tion (2.30) needs to be imposed on the flexible mode q. However, instead of (2.30), we
directly derive the linear two-point boundary value problem (A.1)-(A.2) for our flexible
manipulators, based on which the iterative procedure described in Appendix A can be
carried out to find stable inverses.

Firstly, we need to find the linearized equation for the reference dynamics (6.38). A
notation for convenience is in order. Let M(z) be a k x [ matrix function of z € R" and
Z € R" be a column vector. The derivative of M at a point z¢ in the direction of Z is
defined as

n
DMz EY %—f

=1

Z:. (6.42)

=z
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Using this notation and neglecting higher order terms, the first term M, q in the reference

dynamics equation (6.38) can be linearized as
Mg ~ [M?+D2M;[q—ql] G+ [d~dol]
~ MG+ [DIMiq)do — [ DyMiqoldo. (6.43)

where the superscript 0 stands for evaluation along go and/or ¢y (solutions of the previous

iteration) no matter whichever is applicable. Since it can be easily verified that
[D:MZ|z=[D.Mz]Z, (6.44)
where z € R", we obtain
MG = MG+ [ D2Mido| q — [ DIMido ] o (6.45)
Both M, and M3 are constant matrices. For the term Hj(y4, Y4, q, ), we have
H, =~ H}+ DJH:[q— qo]+ DYH, (¢ — do)
= Hj — DJHaq0 — D}Hago + DY Haq + D} H,q. (6.46)

Similar to the derivation for the first term M,§, we can get the linearized form of Myyqy
as

Mijia = Mja — | DYMaga | a0 + [ Dy Mijia] q. (6.47)
Thus, combining the equations (6.45) through (6.47), the linearized inverse dynamics

can be expressed as

LG+ L2g+ Lag = Ly, (6.48)
where
Ly = My (6.49)
L, = M,+ DJHa; (6.50)
Ly = DIMGo+ Mz + DH, — DIM.js; (6.51)

Ly = Mjs—[DMyja] g0+ [ DIMido] qo + DOHaqo + DI Hago — HY. (6.52)
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Let n = [¢7, ¢T]%, and

At) = 0 ! , and B(t) = 0 . (6.53)
—L7'Ly —LT'L, LitL,
Then, equation (6.48) is an equation (A.l) in second order form.

Secondly, the linear boundary conditions (A.6)-(A.9) are derived. Instead of updating
the transformation matrices C, and C, at each iteration, in this study we compute one
Cs and one C, for all iterations by evaluating matrix A(¢) in (6.53) at go = 0 and
ya = [0°,90°]7. It is found later in simulation by computing the eigenvalues of A(%o)
and A(ty) that at both f, and t; the zero dynamics has five stable eigenvalues and

three unstable ones. Thus, following the procedure in Appendix A. the transformation

matrices Cs and C, would be of dimension five by eight and three by eight respectively.

6.4 Tip Trajectory Tracking Control

In this simulation study, we demonstrate the effectiveness of our tracking control
design using stable inversion. First of all, a simulation setup is presented. Then, condi-
tions are verified to ensure the applicability of stable inversion. This is followed by two
tracking controllers design using stable inversion and the well-known computed torque

method respectively. Some simulation results are presented.

6.4.1 Simulation setup

Table 6.1 lists key parameters of the two-link flexible arm model used in this study.
The two links of the manipulator are also assumed to have the same structural damping
ag = 0.01.

In addition to satisfy Assumption 2, the reference output trajectory is selected follow-
ing considerations given by Bayo and Paden [4]. Firstly, the acceleration profile should

not have exceedingly high frequency components. The reason is that if the acceleration
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Table 6.1 Properties of Two-Flexible-Link Arm
No of link l P e Me 2
Link One | 1.0 m | 0.3 kg/m? | 3.9375 N/m? | 0.15 kg | 0.200 kg m?
Link two | 1.0 m | 0.1 kg/m? | 0.4375 N/m? | 0.10 kg | 0.067 kg m?

changes too rapidly, then the calculated torque profile will contain high peak impulse

which may excite the natural frequencies of the flexible manipulators. Secondly. the

maximum acceleration limit should be chosen so as not to saturate the actuator. With

these considerations, we have chosen the reference tip trajectory for link two (the second

component of the output) as shown in Figure 6.3, in which the acceleration profile is

composed of a pure sinusoidal function. A similar reference trajectory profile has been

chosen for link one.
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Figure 6.3 Desired Tip Trajectory Profiles for Link Two
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6.4.2 Verification of system properties

In order to apply the stable inversion approach, two conditions need to be verified:
the system should have a well-defined relative degree and its zero dynamics should have
a hyperbolic equilibrium point at the origin.

Before we verify these, we first show the non-minimum phase property of the system.
Otherwise, the output trajectory tracking can be accomplished using the classical inver-
sion approach. To make notations simple, we assume that the two links are identical.
Let [, m, and e denote their length, mass, and product of area moment inertia and
Young’s modulus respectively. Besides, let m. and 7z, denote the end-point mass and
hub inertia of the second link respectively.

Zero dynamics is first derived from reference dynamics (6.38) with ys = [0°.90°]7
and derivatives of y4 of all orders to zero (an equilibrium point). Then. a standard

linearization on the obtained zero dynamics yields linearized zero dynamics as follows:
A1+ A2q + Asq =0, (6.54)

where A, = agA3z, and

37 : 5 B _ Ll __ 9 _ 4. _ 9
Smt2me+2% im+4m. +43 gm — 23 s — 23

I
Bm+3m.+3% Bm+6m.+6% —im-3% —-Im-3%

A]_ = (6.55)
im+m, im + 2m, —+m —-5m
i im+m. im + 2m, —+m ~Zm ~
4e 6e 0 O
6e 12¢ 0 O
Az = ) (6'56)
0 0 d4e 6e
0 0 6e 12e

and oy is the damping ratio. Notice that we have exactly

det A; = 144¢* > 0, (6.57)
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(8]

and

~ 13230000 10584000 ™ 5202000 2~ aarop " ez < O- (6-38)

det Al =

Equations (6.57)-(6.58) imply that the product of all eigenvalues of the system is neg-
ative. Since the total number of the eigenvalues is an even number, we conclude that
there exists at least one positive real eigenvalue for the linearization of the zero dy-
namics (6.54). The non-minimum-phase property is thus verified. It is noticed from
the above argument that the non-minimum phase property is independent of a4, the
damping ratio. Thus, even in the case when structural damping is neglected (aq =0).
the flexible manipulator system is still non-minimum phase.

To verify the hyperbolicity of the zero dynamics, we further assume that m. = 0 and
15 = 0 for notational simplicity. First, zero eigenvalues can be easily excluded from the
fact det A3 # 0. Next, suppose the zero dynamics has pure imaginary eigenvalues i\
with A # 0. Substituting them into the characteristic equation of the zero dynamics

leads to

det (—A2A; + iAAs + A3) = 0. (6.59)
det (—A%A; 45" + {1 + iagA]]) = 0. (6.60)

Equation (6.60) says that there exists an eigenvalue A of matrix A; A3 such that
A2\ +[1 2iag)] = 0. (6.61)

- 1 .
A= :\-2-[1 + iagl). (6.62)
But the characteristic equation of matrix em~'A; A;™! is exactly given by

., 61 5 331 , 127 1

S = 190° ~ 3116800° T 42336000° ~ 1905120000 _ (6.63)

It can be easily verified that this characteristic equation has all four real roots. Thus,

condition (6.62) can not be true. Hence, the linearization of the zero dynamics (6.54) can
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not have purely imaginary eigenvalues +iA. However, it is noticed that no conclusion
can be made about the hyperbolicity of the zero dynamics when structural damping in
neglected (g = 0).

The well-defined relative degree property can be seen by arranging the forward dy-

namics as follows. Substituting (6.37) into dynamics equation (6.35) yields
[ M2z () — M21() D2 ]G + Ha(v,%) + Mag + Mg + My (¢)§ = 0. (6.64)

It can be easily seen that matrix Maa(¥) — My (¥)D; evaluated at 6, = 90° is exactly the
matrix A, in equation (6.54) because equation (6.64) with y = y, is the reference dynam-
ics (6.38). Equation (6.58) says that this matrix A, is nonsingular. Thus. substituting

equations (6.37) and (6.64) into another part of the forward system dynamics (6.34)

gives
M ()i + Hi(0,¥) — Moo(0) Ha(0. %) + Mag + Maq] = u. (6.65)

where
M1 (¥) = Mu(¥) — Meo(¥) Mar (), (6.66)
Mi5() = [ Myz(¥) — My (%) D2 || Maa() — May(w) D2 ] (6.67)

It can be easily verified that M,, the coefficient matrix of ¢, is invertible under the same
simplifications as made in the verification of the hyperbolicity. Thus, the existence of
a locally well-defined relative degree is verified, that is, both output components have
relative degree two at the equilibrium point 6 = [0°,90°]7. It can further be verified that
the above argument is still valid over the range of 5° < 8; < 90°. The range is selected

such that it covers the reference trajectory chosen in the simulation study.

6.4.3 Stable inversion vs. computed torque

In this subsection, we present simulation results and study the performance of our
stable inversion based tracking controllers by comparing it with the well-known com-

puted torque approach.
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To apply stable inversion, the iterative procedure discussed in Appendix A is carried
out to compute stable inverses. For the selected reference output trajectory, the nominal
control input us and the desired joint-angle trajectory 84 are calculated through the

following steps:

e Step 1: Set go(t) = 0 for all £.

e Step 2: Linearize (6.38) along qo(t) and go(t) to get (6.48), (A.6)-(A.8) and (A.12)-
(A.18).

Step 3: Integrate equation (A.16) backward in time to get S(t).

Step 4: Integrate equation (A.17) backward in time to get o(¢).

Step 5: Integrate equation (A.18) forward in time to get (,(¢) and get (3(¢) by

(A.14).

-1

q(t) C, 1
q(t) C. G2

i

Step 6: Compute

Step 7: If ||g — qol| is greater than a given threshold, set go = q and go to step 2.

otherwise go to step 8.

Step 8: Compute the nominal input uy4 from (6.41) and desired rigid mode 8, from

(6.37).

The numerical procedure stops when it leads to a relative error of 5 x 107* in ¢
between the third and the fourth iterations. It takes less than five minutes on a DEC
workstation with the algorithm coded in Matlab. Figure 6.4 shows the nominal control
input ug, the joint torque needed to produce the desired tip trajectories in output. As
expected, the torque needs to be applied to pre-shape the links some time before the tip

starts moving due to the non-minimum phase property of the system.
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Figure 6.4 Nominal Control Input by Stable Inversion

Table 6.2 lists eigenvalues of the linearized forward system dynamics. They are

computed from the linear approximation of forward dynamics (6.29) at § = [0°,90°]7

and ¢ = 0. It is clear that the open-loop forward dynamics is unstable due to four poles

at the origin. Those poles are corresponding to rigid modes 6 and 4.

Table 6.2 Eigenvalues of Open-Loop Forward Dynamics

0

0

0

0

-16.2886+14.7029

-16.2886-14.7029

-0.2219+10.6581

-0.2219-10.6581

-42.6746+181.9378

-42.6746+181.9378

-0.6345+111.2469

-0.6345-111.2469

The controller structure of our stable inversion method is shown in Figure 6.5. It
is the structure of the Approach II. The stabilizing signal u, is superimposed on the
feed-forward nominal control u4 to obtain the total control input to the plant. Since the
flexible modes of the arm are not measurable, the controller uses only the rigid-angle
measurement for feedback. It is noticed that the input/output map from the joint torque
to the rigid angle is of minimum phase. The PD joint-angle stabilizing feedback is given
by

v(8) = —K,0 — K.f. (6.68)



Yd Uq u -
—— Inverse Forward l
U,
S:tabiﬁzer
| 64 — 9
6s Py
A

Figure 6.5 Control Scheme of Stable Inversion

The feed-forward plus feedback controller has the following overall form:

u = Uuq+u,

= ug+7(0) — v(fa)

= uq— Kp[0 — 8] — Kalf — 64, (6.69)
where
05 0
K,=Ky= . (6.70)
0 0.375

The gain matrices are selected to stabilize the two linearizations of the forward dynamics
at to and t;. The eigenvalues of the linearization of the forward dynamics (6.29) at

6 = [0°,90°]T and q = 0 after stabilization are given in Table 6.3.

Table 6.3 Eigenvalues of Closed-Loop Dynamics

-43.8221+181.2408

-43.8221-181.2408

-16.3544+154.6808

-16.3544+154.6808

-0.9070+i11.6319

-0.9070-111.6319

-1.7529+-15.8291

-1.7529-15.8291

-1.4119+i11.0185

-1.4119-11.0185

-0.2608+i10.6814

-0.2608-10.6814
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Using control law (6.69), computer simulation of the closed-loop system is carried
out in Matlab. Figure 6.6 plots the output trajectories using the tracking controller
against the desired reference output trajectories. It is concluded that the tips of the
robot arm follow the desired trajectories exactly without any undershoot, overshoot, or
steady-state errors.
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Figure 6.6 Reference Trajectory and Trajectory by Stable Inversion

As a comparison, the well-known computed torque technique [62] is considered. Sim-
ilarly, only rigid modes are assumed to be measurable and used for feedback. The input

torque to the system by the computed torque method can then be expressed as follows,
7" = My1(64)04 + H1(8a,02) — Ka(0 — 8)a — K, (8 — 64), (6.71)

where 64 is computed by 8; = ys. The feedback gains K, and Ii',, are chosen in such a
way as to optimize the output tracking.

For the same reference trajectory, the output profiles generated by the computed
torque method are shown in Figure 6.7. Clearly, the computed torque technique causes

significant output tracking error. The error is entirely due to the design in which the
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Figure 6.7 Reference Trajectory and Trajectory by Computed Torque

flexibility is not taken into consideration. Not like the robot system studied in the
preceding chapter, this two-link flexible manipulator system has a non-minimum phase

property that is not “weak”.

6.5 Conclusions

Stable inversion based tracking control for nonlinear non-minimum phase systems is
successfully applied to the tip trajectory tracking for a two-link flexible robot manipula-
tor in this chapter. Simulation results demonstrate that the stable inversion approach is
very effective for obtaining stable and remarkably accurate output tracking for multi-link

flexible manipulators.



CHAPTER 7 OPTIMAL MOTION PLANNING AND
CONTROL OF A FLEXIBLE SPACE ROBOT

This chapter investigates a new optimal motion control strategy for a flexible space
robot. The robot is assumed to consist of a two-link flexible manipulator attached to
rigid spacecraft floating in space. The control strategy is optimal in the sense that the
system performance measured by the maneuvering time together with control effort and
structural vibrations is optimized while the interference from the arm to spacecraft is

kept satisfactorily small.

7.1 Introduction

Structural flexibility of space robot arms and limited solar energy supplied by space-
craft impose great challenges to a satisfactory space robot motion control. Firstly, any
control strategy clearly has to result in a minimum energy consumption because of lim-
ited resource. Secondly, any movement of the robot manipulator would transmit an
undesirable interference force from the arm to spacecraft. Finally, any control forces
or disturbances applied to the arm are very likely to excite structural vibrations in the
arm as well as in spacecraft. Therefore, a good motion control design for a space robot
should have the following properties: 1) achieving desired motion with the shortest pos-
sible time; 2) not ezciting structural vibrations; 8) using a minimal amount of energy;

and 4) producing satisfactorily small interference on spacecraft.
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Though robotics has been an active research area for the past few decades, applica-
tions are concerned primarily with massive earth-bound industrial robots. Investigations
concerning space robots have been mostly carried out by considering a rigid-link assump-
tion [43]. To deal with the flexibility, a perturbation approach has been utilized to design
separate motion controllers for the rigid and the flexible parts by assuming relatively
small elastic vibrations [40]. Using reaction wheels or attitude control jets [61], the ef-
fect of interference from manipulator motion to spacecraft can be compensated. Another
method to reduce the interference is to include spacecraft in trajectory planning and to
use kinematic redundancy to optimize robot trajectories [39]. All the methods either
lead to slow motion in order to keep down energy consumption and vibration excitation,
or neglect the transient impact on spacecraft.

A fundamentally different approach to the tracking control of flexible structures is
by using non-causal inversion. The idea was first presented by Bayo [2] to solve for
inverse dynamics of one-link flexible robots. Since one-link robots are linear systems,
the Fast Fourier Transform method worked successfully. By using feedback linearization
and locally exponentially stable joint controllers, the method was extended to multi-link
flexible robots [50]. With these results, the stable inversion concept was introduced to
design exact and stable output tracking controls for a general class of nonlinear non-
minimum phase systems [11. 12]. Furthermore, as studied in chapter 3, stable inverses
have a nice minimum energy property. Specifically, stable inversion can achieve a given
reference trajectory using a minimal amount of control energy and causing a minimal
amount of internal vibrations.

In this chapter, we investigate a new motion control strategy by using the stable
inversion approach for space manipulators with two flexible links and no control jets
or reaction wheels. Section 7.2 briefly describes the equations of motion of the flexible
space robot. It also presents the formulation of a nonlinear optimal control problem

that characterized the optimal motion control. Section 7.3 is devoted to introduce an
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approach to solve the optimal motion control problem by applying stable inversion. The
approach involves an optimal trajectory planning and output tracking control design.
Section 7.4 is intended to provide a closed-form solution of stable inverses to simplify the
trajectory planning problem. In Section 7.5, a simulation study is set up and carried out
to demonstrate the effectiveness of the proposed motion control strategy. Computation
of the stable inverse is carried out using the numerical approach developed in Chapter 3.

Finally, some remarks are made in section 7.6.

7.2 Forward Dynamics and Problem Statement

Consider a flexible space robot that consists of a rigid platform, representing space-
craft, and a robot arm with two flexible links. Both joints of the links are considered
to be revolute, and input torque is applied at these joints. Both links are assumed to
be slender such that the Euler-Bernoulli beam assumption is valid. A planar maneuver
is assumed, and out-of-plane deflections of both links are neglected. Any possible effect
from the sun and the earth is also neglected which means that there are no external

forces acting on the system.

7.2.1 Forward system dynamics

Figure 7.1 depicts the space robot system together with its reference coordinate
frames. The link connected to spacecraft is referred to as link one and the link attached
to the tip of the first link is link two. The rotation angle 6, of link one is the angle between
the undeformed link position and the vertical axis of the body frame of spacecraft. The
angle 0, is the joint rotation of rigid base of the second link measuring the undeformed
second link position from the tangent line at the tip of the first link. z; measures the

distance of a point at link 7 in the direction of the undeformed link position and w; is
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Spacecraft

Figure 7.1 Flexible Space Robot

the deformation for the ith link at z; for 1 = 1 and 2.
The assumed modes method is used to parameterize the continuous deformation of
both flexible links. The admissible functions are chosen to be the ones for clamped-free

beams [37], and two flexible modes are assigned to each link:

wi(zi,t) = 22: oii(=)qi;(t) ¥ ou(z)q(t), Vi=1,2, (7.1)

j=1

where o; is of dimension one by two and ¢; two by one for : = 1 and 2. ¢y;(z;), the jth

admissible function of link 2 for : = 1 and 2, is given by
oii(z:) = kj[cosh(Bi;li) + cos(Bi;l;) ][ cosh(Bi;z:) — cos(Bi;z:)]
—[sinh(B;;l;) — sin(B;;l;) |[sinh(B;:;z:) — sin(B:j2:) ], (7.2)
where [; is the length of link 7 for i = 1 and 2, l;:j a constant, and §;; for 7 =1 and 2 are

the first two low-frequency solutions of the following equations
1 + cosh(B;;l;) cos(Bijli) =0, Vi=1,2. (7.3)
Denote the whole system’s generalized coordinates as

def -
T,b é [1.01 y07007917 021 q11, (I127¢I21,Q22]T7 (('4)
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which consists of the coordinates v for spacecraft, the rigid modes 6 and the flexible
modes g for the arm:
vE [Zo, Yo, 00]T, A [61, 02]1" q « [q11, 912, Ga1, ‘122]T- (7.5)

By the Lagrange’s method [5], the equations of motion can be written as

M (¥)5 + My2()8 + Mya()G + Hy(,9) = 0, (7.6)
M1 ($)5 + Maa()8 + Mas()G + Ha(, %) = u, (7.7)
M31($)5 + Msa(¥)0 + Maa ()G + Ha(9,¥) + Cog + Koq =0, (7.8)

which can be put in a more compact form
M%) + H(,$) + C¥ + K¢ = B,u, (7.9)
where u is the vector of joint torque and B, the torque distribution matrix given by

T
B, = [ O2x3 Iz Ozx4 ] . (7.10)

K is the stiffness matrix
05x5 05x2 05x2
. 05x5 05x4 -
K= =] Oaxs Ki Ozx2 | (7.11)
O4x5 Kq .
O2x2 O2x2 K,

and their elements are given by
l
[Ailik =/0 eiogi(zi)oi(z:i) dzi, Vi=1,2, (7.12)

where e; denotes product of the Young’s modulus constant and the area moment of

inertia of link 7 for ¢ = 1 and 2, and ¢7;(-) the second derivative of o;;(-) with respect to

spatial variable z;. The damping matrix C is taken to be proportional to matrix K by

damping ratios aq4; and a4z of the two links respectively:

[ Oexs Osz Osa
Oaxs C1 Oz2x2 |>» (7.13)

| Oz 022 G2

05x5 05x4
O4x5 Cq

C =

-
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where

Ci=aukK;, and C;=ank,. (7.14)

M(%) is the positive definite symmetric inertia matrix and its detailed definition is
given in Appendix C. H(%, ¢), the part containing centrifugal and coriolis terms, can

be obtained from M(%) as follows:

18(7 M(%)e)
> .

Hw, ) = MY - 3= (7.15)

The Cartesian coordinates of the tip position of the manipulator relative to spacecraft

are chosen to be the system’s output vector. Each component is given by

y1 =l sin(6; + ( 4 22q) + Ly sin(6; + 0, + o, (L)@ + ""’l(:?)qz), (7.16)
y2 = [y cos(8; + ll(l 1) q1) + L2 cos(8y + 6, + o, (L)1 + 21(;2)@). (7.17)

In a more compact form, the output equation can be written as
y = h(v). (7.18)

Equation (7.9) together with (7.18) constitutes the forward system dynamics of the
flexible space robot system. It is noticed that the system dynamics is smooth, square

(with the same number of inputs and outputs), and affine in control input u.

7.2.2 Statement of the problem

Consider a typical task usually performed by a robot manipulator attached to space-
craft. The task would be to grasp an object, say a satellite, from space and put it into
spacecraft. To fulfill the task, motion control needs to be applied to move the robot arm
from an initial configuration to a final configuration.

A good motion control design should, as mentioned earlier, achieve the desired con-

figuration change with the shortest possible maneuvering time t; — ¢ where o and t;
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respectively denote the initial and final time of the maneuver. Due to a scarcity of fuel
in space and limited solar energy, the motion should require a minimal amount of con-
trol effort which could be characterized by the £;-norm and the magnitude of control
input u. Relatively long and flimsy robot arms used for space purpose render them-
selves more structural flexibility and are more likely to cause structural vibrations. The
Ly-norm and the magnitude of the flexible coordinates q could be used to characterize
the structural vibrations which should be kept as small as possible for a good maneuver.
The undesirable interference from the manipulator to spacecraft can adversely affect the
space mission and should be kept within a sufficiently small range. The magnitude of ©
could be one characterization of this interference.

Based on the above discussion, an optimization problem is set up as follows. The
performance index is set up such that the optimized motion control minimizes a linear
combination of t; — to, || % ||y(~co,4+00) @04 [ @ ||£;(~co,4+0)- Limitations on magnitudes
of those undesirable quantities are set up as constraints (7.22), and a feasible set U is
defined according to magnitude requirement on control input as well as the saturation

levels of joint actuators installed:
U {u | [t cmmcoton) < €0 Vi=1,2}, (7.19)

Let y4(to) and yq4(ty) respectively denote the initial and the final configurations of the
arm. The problem that characterizes the motion control design is thus given by

Definition 7 (Optimal Motion Control Problem)

min J(u) = wilty = to] + wull 4[| £y(~co,to0) + Wall 91lc2(~c0,400) (7.20)
subject to

y(t) = ya(to), Vt<to, and y(t) =ya(ty), Vt>ty, (7.21)

lgll <€ and }o] < e, (7.22)

forward system dynamics (7.9) & (7.18), (7.23)
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and &y ts given.

Constraint (7.21) specifies the desired configuration change and the norm || - || in (7.22)
is taken to be the component-wise infinity norm. w;, w, and w, are weighting constants.

It is noticed that (7.20)-(7.23) is a highly nonlinear and non-convex optimal control
problem. Not having any structure on U as well as the hard (equality) constraints (7.21)
on initial and final configurations makes it impossible to solve the Hamilton-Jacobi-
Bellman equation associated with the Pontryagin Minimum Principle. By taking ad-
vantage of a minimum energy property of stable inversion, we propose an approach that

would lead to a suboptimal solution of the problem stated.

7.3 Optimal Motion Control in Two Stages

Firstly, each feasible control u € U (with a specified initial state condition) corre-
sponds to an output trajectory y through the input/output map of forward dynam-
ics (7.9) & (7.18). Secondly, the set of all smooth trajectories satisfying the required
configuration change renders itself a better structure than that of U. These facts suggest
a reorganization of searching over controls by a trajectory planning problem searching
over output trajectories combined with a control optimization for each such trajectory.

Following this idea. it is easy to see that the optimization problem (7.20) can be
reorganized into two stages. In the outer-stage, an optimization is searching over all
smooth trajectories satisfying the requirement on initial and final configurations. For
each such trajectory, an inner-stage optimization is performed to find an optimal control
input that minimizes the performance index. Thus, optimization over both control
inputs and output trajectories are performed. This two-stage problem can be stated as

follows:
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Definition 8 (Motion Control in Two-Stage)

4 Y

mig ¢ min T (uv) = we[ty — to ] + wull 4[| (~c0,400) + Well 4l 3 (~c0rt00) ¢ (7.24)
ueU
(S-L-Y=yd J
subject to
lgll < ¢, and [[0f] <e, (7.25)
forward system dynamics (7.9) & (7.18), (7.26)

and tg ts given.

The set Y contains all smooth trajectories satisfving the hard constraints on initial and

final configurations:
Y {ya | va(t) = yalto), Vt < to, & wa(t) = yalts), Vt >t; }. (7.27)

Notice that the only constraint in the inner optimization is an output tracking re-
quirement y(¢) =yq(¢) and all other constraints are left to the outer optimization. Hence,
the inner-stage is an unconstrained exact output tracking control problem minimizing
J(u). The newly developed stable inversion theory provides a solution that precisely

addresses this issue.

7.3.1 Inner-stage by stable inversion

Recall the interesting energy feature of the stable inverse solution established in
Chapter 3, Theorem 3 and Theorem 5 on the minimum energy property of system’s
internal vibrations and the nominal control input u4. Specifically, let n be any coordinate
for the invariant zero dynamics manifold of the system (2.3)-(2.4) and n; denote the

solution of the two-point boundary value problem (2.29)-(2.30) which corresponds to
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the stable inverse z4 and uy. Then, it has been proved in the two theorems that (1)
among infinitely many solutions for n that corresponding to y = yq4, 14 is the only one
with finite £,(—o00,+0o0)-norm; (2) among infinitely many input trajectories that are
able to produce y = y4, uq is the only trajectory with finite £,(—o0,+o0)-norm. In
another word, for a given y4 and the requirement y = yq4, uq and 74 from stable inversion
give the minimum energy solution for the input as well as the internal vibrations.

Now consider the inner-stage optimization problem for a given yq:

Definition 9 (Inner-Stage Optimization Problem)

min J(u) = welty — to] + wull 2 [l£y(~00+00) + Wall €1l £2(~00.4+00) (v.28)
subject to

y(t) = yal(t), (7.29)

forward system dynamics (7.9) & (7.18), (7.30)

and tq is given.

The forward dynamics of the space robot given by (7.9) is clearly linear in input and can
be written in the form of equation (2.3). Furthermore, let us assume that all conditions
for stable inversion are satisfied (the assertion is to be discussed later). ¢ and ¢ can be
used as the coordinates for the zero dynamics of the robot which is in fact the structural
vibration dynamics.

Since the performance index [J(u) contains £;-norms of both control input u and
internal state g, it is easy to see that the stable inverse is the only solution to the inner-
stage optimization problem (7.28) based on the minimum energy property. The optimal

performance index is then given by

Jya) ¥ T (u)
Y=yYd
= wyty —to] + wyll ua(¥a) | co(~corto0) + Well qa(¥a) llca(~c0400):  (7-31)

where uq and gy denote the stable inverses for a given yq.
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7.3.2 Optimal trajectory planning

For the two-stage problem (7.24), the inner-stage is automatically solved by stable
inversion. The problem is then reduced to the outer-stage. By substituting the optimal
solution from the inner-stage (7.31), the remaining outer-stage is an optimal trajectory

planning problem given as follows.

Definition 10 (Optimal Trajectory Planning Problem)

ﬁé% T (ya) = we[ts — to] + wall ta [l £y (o0 +00) + Wall 4 |l c3(~c0,+00) (7.32)
subject to

lud|l < €u, (7.33)

lgzll <€, and |lvafl < e, (7.34)

and tg is given.

The constraint (7.33) rewrites the definition (7.19) on feasible set U.

There are two difficulties in solving this problem. First, the optimization is still
an infinite-dimensional searching over trajectory space specified by Y. Secondly, every
constraint or index evaluation requires solutions of stable inversion which itself is an
iterative procedure in general. Thus, tremendous computing effort is demanded.

To handle the first difficulty, we parameterize every trajectory y; € Y as a linear
combination of a finite number of base time functions. By doing so, the optimization
problem (7.32) is reduced to a finite-dimensional problem. However, only a suboptimal
solution is pursued. It can be verified that choosing sinusoidal base functions as follows

is a valid parameterization:

t—to
tf—to

ya(pr,---,Pa,st) = ya(to) + [ya(ts) — ya(to) ]

—[ya(ts) = ya(to) J(*) ; % Sin(Qﬂ’i: —to

) (7.35)
f—to
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where p; +---+ps = [I,I]T, and each p; for i = 1,...,7 is a two by one constant
vector, the design parameter, and the operation (*) is defined as a component-wise
vector multiplication.

To deal with the second difficulty, we derive a closed-form stable inverses from lin-
earized system dyramics. Thus avoiding iterations on every constraint or index eval-
uation. The derivation of the closed-form stable inverses is outlined in the following

section.

7.4 Closed-Form Stable Inverses

In this section, we try to derive a closed-form stable inverse to simplify the optimal
trajectory planning problem (7.32). Firstly, it can be verified that the system dynam-
ics (7.9) and (7.18) have a well-defined vector relative degree for the output defined.
Secondly, the smoothness and smallness of ys can be guaranteed by selecting an appro-
priate feasible trajectory set Y in motion planning. However, it is noticed that zero
dynamics of flexible space robots with joint torque as input and tip position as out-
put does not have a hyperbolic equilibrium point at the origin due to zero eigenvalues
corresponding to the generalized coordinates of the spacecraft. To make stable inver-
sion applicable, system dynamics is first modified such that it renders hyperbolic zero
dynamics without destroying the relative degree condition. Then, a closed-form stable

inverses is derived through a linearization approach.

7.4.1 Augmented forward dynamics

To deal with the non-hyperbolicity of zero dynamics, we augment both system’s
input and output vectors. Let § = v be the augmented output component, and @ the
augmented input that consists of three components: two thrusters acting on spacecraft

in directions aligned with the body axes, and a torque on the mass center of spacecraft.
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Then, the augmented forward system dynamics can be written as

My ()5 + Mia(9)0 + Mya(¥)G + Hi(, %) = Bi(¥)a, (7.36)
M1 (V)5 + M (¥)8 + Mpa($)§ + Ha(4, %) = u, (7.37)
Mai($)5 + Mag($)8 + Msa(¥)§ + Ha(9,%) + Cog+ Kog =0,  (7.38)

v="h) (7.39)
y=v,
where B,(¢) is a nonsingular force distribution matrix given by
[ cosfp —sinfy O
Bi(¢¥)=| sin8y cosfy O |- (7.40)
] 0 0 L]

Since we assume that no forces from spacecraft could be used, a non-holonomic con-
straint by setting & = 0 in equation (7.36) is added to our motion control problem (7.20).
This constraint will also appear in the optimal trajectory planning problem (7.32).

With the coordinates of spacecraft specified as part of the output, this augmented
dynamics shares the same zero dynamics as those for two-link flexible robots. Thus,

hyperbolic zero dynamics is guaranteed (see Chapter 6).

7.4.2 Stable inverse dynamics

In the flexible space robot case, the stable inverse dynamics can be easily derived from
the augmented dynamics (7.36)-(7.39). For any given y4, We first get inverse kinematics

from output equation (7.39) as follows:

.1 . o(l
0 = arcsxn(ﬂ\/ylﬁ + y23) — arcsin( J2d ) — 5 )ql, (7.41)

\/ylfz + y23

. 1 0'1 ]
0 = r—2arcsin(z\/id + 423) + 2o - 0l - o'an (7.42)
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It is noticed that in the above derivations we have assumed that the both links are of
the same length [; = [, = [ and the same mode shapes are used ¢, = 0, = a. Let g, be
the tip angle seeing from the hub of link 1 measuring from the vertical axis of spacecraft
body frame. The equations (7.41)-(7.42) are valid for 0 < 8, < 180°. Outside this range
the inverse may not exist or different expressions should be used due to singularity and

nonlinearity.

Rewrite equations (7.41)-(7.42) in a more compact form as follows:

0 = fo(ya) + Magq. (7.43)

Substituting (7.43) and v = yy into dynamics (7.37)-(7.38) yields the stable inverse
dynamics:
[ Ma2(-) Mg + M3z3(+) 12 + Coda + Koyqa
+Hs (") + Maaz(") folya) + Mar(-)fia = 0, (7.44)
uq = [ Maz(-) My + Maa(-) 1Ga + Ha(-) + Maa(-) fo(ya) + Mar(-)Gg5 (7.45)

where the subscript d stands for stable inverse solutions by imposing required boundary
conditions (see Section 2.2), and matrices My (-),..., M33(-) are functions of (g4, ya, Ja)
and H(-) and Hj(-) are those of (qu,yq4, J4) and their derivatives. With the same sub-

stitution, the non-holonomic constraint can be written as
[ Mia(-) My + Mi3(-) )G + Hi(-) + Mio(-) fo(ya) + Mu(-)j4 = 0. (7.46)
A standard linearization on equations (7.44)-(7.46) yields

[ M3 Mg + M3 Ga + Coda + Koqa + MG Mgg + M35, =0, (7.47)
[ M, M, + M )dq + MLMga+ MYy, =0, (7.48)

and an expression for uy4, where the equilibrium point with ¢§=[0,0,0,0]7, 89 =[25°, 45°]T

and §9=[0.0,30°]|7 is chosen as the linearizing point.
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From (7.48) we have
g = ‘Mfl—l[[Mszﬂ + My 1da + M, M), (7.49)

where the invertibility is guaranteed since the system inertia matrix is positive definite.

Substituting (7.49) into (7.47) we obtain
MPGi + M34a + M3qa + Mja =0, (7.50)

where the coefficient matrices M?, ..., MY are obviously defined. The equation (7.50) is

actually the zero dynamics in linearization. It can be written in a state-space form
‘zl- = Aqq + By, (7.51)

where ¢ = [¢7, ¢3)7, and matrices A, and B, are defined accordingly.

7.4.3 Closed-form stable inverses

To solve for a stable g, the dynamics (7.51) is first decoupled by a transformation

e X’ ‘X“ -
¥ x x)a¥ |77 T g (7.5)
X Xui
which leads to
G J, 0 G B,
= I s (7.53)
4, 0 J. gz B.

where both J, and —J, are Hurwitz. This is guaranteed by the hyperbolicity assumption
on the zero dynamics.

Time-scaling is carried out to simplify the calculation £ = [t — ¢]/[t; — to]. From
the boundary conditions requirement of stable inversion we know that the dynamics lies
in unstable manifold of the zero dynamics at time ¢y and in stable manifold at time
t;. Equivalently, §;(=0) = 0 and g(f=1) = 0. Solving (7.53) with these boundary

conditions, we obtain

ad= exp{Jus[f — 71} Bosia(r) dr, VE> 0, (7.54)
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&) = [ exp{=Juslr — D} Buia(r)dr. V<1, (7.55)

where by time-scaling
. B of B -
Jus def t1dee Jus def t;du, B def _t; B.s def Zu (7.56)

Straightforward integrations on equations (7.54) and (7.55) with y; parameterized by
(7.35) provides for all £ > 0,

ql(f) = E M;l [% [eJ:ft- - COS(wi{)[] B,f — L%J,fB,/ sin(w,-f)] Pui» (7.57)
= ; :

1

and for all £ < 1,

(72(ﬂ = Z MJI [_1_ [e— ws(1-8] _ cos(wit_)[] Buf - ;1—2JufBu] sin(w;f)] P, s (7.58)

=1 t i

where
. 1
M, <1+ ‘?J,f,, (7.59)
def - def -
w; = 2mi, and p.,, = wifyd(1l) — ya(0)](*)p:- (7.60)

Recall that the operation (*) is defined in equation (7.35) as a component-wise vector
multiplication.

Now the transformation (7.52) gives us a closed-form solution of G, equivalently,

(94, 4a):
Xuqe74113,(0), Vi< 0;

qd Xagi(t) + Xoug@a(t), YOLSEL L (7.61)
Xoger =gy (1),  Vix1,

where ¢,(f) and (%) are given by equations (7.57)-(7.58). Using this solution and an
integration on equation (7.49) with time-scaling carefully involved will bring us the
solution of 94. Finally, substituting of solutions of g4 and v4 into equation (7.45) in its

linearized form yields uq. Expressions of vy and uy are considerably messy. However,

their derivations are straightforward.
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7.5 Optimal Motion Planning and Control

In this section, we present a simulation study to demonstrate the effectiveness of
the proposed optimal motion control strategy. The optimal trajectory planning prob-
lem (7.32) is firstly solved to yield a planned tip trajectory y; satisfying the required
configuration change. Then, the stable inverse is computed and an output tracking
controller is designed incorporating the inverse to drive system output, the tip of the

manipulator, to track yj.

7.5.1 Simulation setup

The flexible space robot is assumed to have the following properties: spacecraft has
100(kg) of total mass and 150(kgm?) of moment of inertia; the arm consists of two
identical links and each link has length 5(m), mass per unit length 0.2(kg/m), damping
ratio 0.025, the product of the area moment inertia and the Young’s modulus 40(N/m?).
Each link is also assumed to have 0.1(kg) of tip mass and 20(kgm?) of rigid hub inertia.

We assume that the initial and final configurations of the arm are
84(to) = [0°,5°]T, and 6,(ts) = [50°,80°]7, (7.62)

which may be visualized from Figure 7.2 corresponding to positions 1 and 5.

The coefficients k; for j = 1 and 2 in the admissible function (7.2) are taken as k; = 1
and k, = 0.01. Since a non-causal control is expected, we set ¢, = 10 (second). We also
set small constraint bounds on v, u and ¢q to represent slow movement of spacecraft and

allowable sizes of control torque and structural vibrations:
€. =[5,5]T, ¢ =[0.125,0.125,0.125,0.125]F, ¢; =[0.25,0.5,0.75]7. (7.63)

Tip trajectories are parameterized with three different frequency components by taking
fn = 3 in (7.35). The weights in the performance index are chosen as w; = 0.5, w, = 0.05

and w, = 0.45.
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Figure 7.2 Planned Motion with only Rigid Dynamics

7.5.2 Optimal tip trajectory planning

To solve the trajectory planning problem (7.32), the following procedure is followed:
e to simplify the problem by parameterizing output trajectories (7.35) and by uti-

lizing the closed-form solution of stable inverses (section 6.4);

e to solve for a suboptimal solution as the planned trajectory by utilizing Matlab

Optimization Toolbox.

With the above simulation set up and the procedure, after running on an SGI work-

station for about ten minutes a solution to the trajectory planning is found as follows:

t; = 10.60(second)
0.6616 0.2211 0.1173

P = s Py = , and p3 = . (7.64)
0.8795 —0.0046 0.1250

The corresponding output trajectory y; can be obtained by substituting this solution
into the parameterization equation (7.35). Figure 7.3 shows the trajectory obtained.
The upper part is the first component of output y; and the lower the second component

of output vector y,.
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Figure 7.3 Suboptimal Tip Trajectory Planned

7.5.3 Output tracking control design

By solving the trajectory planning problem, we obtain the prescribed trajectory y;
satisfying the desired configuration change. The next is to compute the stable inverse
for an output tracking controller. The following procedure is followed:

e to modify the system dynamics such that it meets the hyperbolic zero dynamics

requirement;

e to carry out a numerical algorithm on the modified dynamics to compute the stable
inverse for given y3.

While in solving the trajectory planning problem, a coordinate trajectory of space-

craft v} corresponding to y; can also be obtained from equation (7.49). The forward

dynamics equations (7.7)-(7.8) with v substituted by v] together with the output equa-

tion (7.18) constitute the modified forward system dynamics:

M22(6,q)8 + Ma3(8,9)G + [ H2(6, 9,6, 4) + My, (6,9)53] = u, (7.65)

M33(8, )0 + Max3(8,9)§ + Cog + Koq + [ Ho(9,q,8,4) + M5, 53] =0, (7.66)
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y = h(0.q). (7.67)

With the coordinates of spacecraft specified, this modified dynamics is essentially the
dynamics for two-link flexible robots (Chapter 6). Thus, it meets the requirements to
apply stable inversion.

The algorithm developed in Section 3.2 is carried out on the modified dynam-
ics (7.65)-(7.67). The dynamics is firstly stabilized by

7(0) = —K,0 — K46. (7.68)

Coded in Matlab, the algorithm is executed on an SGI workstation. The procedure
converges to a satisfactorily small error after only three iterations. The computing time
is about three to four minutes. Only three iterations When the algorithm converges,
we cobtain the stable inverse pair (u; - 7(03),(92,@,9},(}3)) of the modified dynam-
ics (7.65)-(7.67). This stable inverse is then used to approximate the stable inverse of

the original dynamics (7.9) and (7.18). Shown in Figure 7.4 is the uj.

10 T L T T T

1 A - d L
_80 S 10 15 20 25 30

Time (sec.)

Figure 7.4 Approximated Nominal Control Input u}
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A closed-loop tracking controller is then designed using the stable inverse pair and

it’s structure is the same as that used in the preceding chapter for flexible manipulators.

A feed-forward plus feedback control law is given by

u = uj+7(8) —(63)
= uj— K[0—-6;] - K4[6 - 63). (7.69)

It is noticed that the stabilizing feedback is also a simple linear joint-angle PD feedback.
See Chapter 4 and a reference by Chen [10] for tracking performance and stability
analysis for various controller structures incorporating stable inverses.

The tip movement by forward simulation is shown in Figure 7.5 together with the
planned tip trajectory yj. It is seen that an excellent output tracking has been achieved.
The error between the simulated trajectory and the planned one is mainly due to the
approximation made to the forward system dynamics in order to render hyperbolic
zero dynamics. The desired configuration change is thus fulfilled by the motion control
which uses only joint-angle measurement and joint torque but not any control forces

from spacecraft.

7.5.4 Suboptimal path vs. sinusoidal trajectory

Before concluding this application study, let us make a brief comparison study. An
output trajectory ys with sinusoidal acceleration profile is chosen as another planned
trajectory. Such smooth trajectories are considered to be the best trajectories as a
common practice in manipulator control area. This trajectory y, is constructed such
that it requires the same amount of time to fulfill the maneuver and it also satisfies
the requirement on the configuration change. The trajectory can be obtained from the

parameterization equation (7.35) with

=1, and p, =[1,1]7. (7.70)
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Figure 7.5 Planned Trajectory and Trajectory by Simulation

With this sinusoidal output trajectory y,, the same procedure is carried out to compute
the stable inverse. The same tracking controller structure is also assumed. Simulation

results are summarized in Table 7.1. It is clearly seen that the sinusoidal trajectory

requires more control energy and exhibits more structural vibrations.

Table 7.1 A Comparison on Performance
Suboptimal yj Sinusoidal y,
Time t; — to 10.60 10.60
Control || u ||, (=cc.+0) 14.40 16.27
Vibration || gl c,(=c0.+o0) 0.57 0.65
Index J(u) 6.28 6.41
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7.6 Conclusions

In this chapter, a new strategy has been developed for motion control of a flexible
space robot. The motion control is formulated as a nonlinear optimal control problem
and rearranged into two stages. The inner-stage is as an unconstrained exact output
tracking problem for which stable inversion provides the unique optimal solution. With
this, the outer-stage becomes an optimal trajectory planning involving system output
alone. A suboptimal solution is obtained using parameterization with a finite number of
base functions. Finally, the stable inversion based output tracking controller is designed
to realize the planned motion.

It is noticed that an error exists between the achieved and the planned output tra-
Jjectories. This is due to an approximation used in computing the stable inverse for the
planned trajectory. Specifically, we have used the reduced dynamics model (7.65)-(7.67))
by replacing the generalized coordinate for spacecraft v with v3. the same coordinate
computed in trajectory planning process using linearized dynamics (7.49). The approxi-
mation is necessary in order to satisfy a condition in stable inversion. However, if we are
allowed to use reaction wheels or attitude control jets, conditions in stable inversion will
be automatically satisfied. In that case, we expect that the error would be eliminated.

It is also worth pointing out that the “optimality” of the proposed approach is
affected by a few simplifications made in the study. Firstly, a linearized model has been
used to obtain closed-form stable inverse solutions. Secondly, feasible trajectories have
been parameterized with a ramp function and three sinusoidal functions of different
frequencies. On the other hand, the true solution to the optimal control problem by
the Pontryagin Minimum Principle is in general extremely difficult if not impossible.
The reason is that there is no solutions available to the associated HJB equations for

problems of highly nonlinear and non-convex nature.
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CHAPTER 8 CONCLUSIONS

This thesis addressed the stable inversion problem and its applications to output
tracking control for various robotic systems. Main contributions were presented from
Chapter 3 to Chapter 7.

A minimum energy property was established in Chapter 3 for stable inverses. It
claimed that out of infinitely many possible inverse solutions, the one provided by the
stable inversion process is the only one that has finite energy measured by £2(—o0. +oc)-
norm. Based on this property, a numerical procedure was developed to provide an
approach to construct stable inverses. The algorithm is based on constructing and
solving an optimal control problem minimizing control input energy. The algorithm was
applied in Chapter 7 for motion control of a flexible space robot.

Output tracking control design was addressed in Chapter 4. The design incorporates
stable inverses into a dead-beat tracking controller. Tracking performance was analyzed
via standard Lyapunov arguments. Furthermore, uncertainties were also considered
and assumed to satisfy the “matching conditions”. A modified controller structure was
presented for those systems with such uncertainties. The robust tracking performance
was also discussed.

From Chapter 5 to Chapter 7 three applications of the tracking control design devel-
oped in Chapter 4 to various robotic systems were studied. Whereas tracking control of
a single-link flexible-joint robot system was designed in Chapter 5, Chapter 6 dealt with
tip trajectory tracking of a two-link flexible manipulator. A space robot system without

usage of any reaction wheels or attitude control jets was considered in Chapter 7. For
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such a system, an optimal motion control problem with trajectory planning was solved
using stable inversion and optimization technique.

The work presented in this thesis is just the beginning towards the objective of
designing output tracking control systems using stable inversion for various robotic sys-
tems. There are many issues related to the area addressed in this thesis that require a

deeper study. These issues may include:

o Extending stable inversion to those systems without a well-defined relative degree

or their zero dynamics does not have a hyperbolic equilibrium point at the origin:

o Further exploring the energy property of stable inverses within a finite time horizon

and the relationship between stable inversion and energy optimal control problems:

o Extending the stable inversion approach to allow more general reference output
trajectories such as those having no compact support or those generated by ex-

osystems on [0, co);

o Defining and constructing robust stable inverse solutions for systems with various

uncertainties or those subjected to disturbances;

o Real time implementing of tracking controllers using stable inversion is an inter-

esting issue to explore due to the non-causality of the inverse control signals;

o Constructing a more efficient numerical procedure to solve for stable inverses which
includes solving the two-point boundary value problems with instability existing

in both positive and negative time directions;

e Extending the robotic models currently considered to include deformation due to
other effects such as shear strain and rotary inertia and to allow three dimensional

motion.
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APPENDIX A AN ITERATIVE ALGORITHM

The key to obtaining the stable inverse pair z4 and uy4 is to solve for a bounded and
convergent 7y from equations (2.29)-(2.30), the two-point boundary value problem. An
iterative approach by Chen [9] to such a solution was developed which is presented in
detail in this appendix for references.

In each iteration, the differential equation (2.29) is linearized along the solution
obtained from the previous iteration to yield equation (A.1). The stable eigenspace E*
and the unstable eigenspace E* of the zero dynamics corresponding to (A.l) are used for
the boundary conditions instead of W* and W*. We thus obtain a linear time-varying

two-point boundary value problem at this iteration:
i = A(t)n + B(2), (A.1)

subject to

n(to) € E*. and n(ty) € E°. (A.2)

The boundary condition (A.2) can be characterized by two equality conditions. To
do this, let matrix X,(fo) (Yi(fo)) contain the real right (left) eigenvectors and the
generalized eigenvectors of A(to) associated with eigenvalues having negative real parts,
and X,(to) (Yu(?o)) contain those associated with eigenvalues having positive real parts.

Then, we have

Y,(to)
Y.(to)

Js(t 0]
Alto)| Xi(to) Xulto) | = (00) e | (A3)
ul ‘o0
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where J,(¢o) and Jy,(to) are the corresponding real Jordan canonical forms of the stable

and unstable subspaces respectively. In particular, from (A.3) we have
Y:(20)A(to) Xu(to) = O. (A.4)

On the other hand, the condition 7n(tg) € E* can be characterized by n(ty) expressed as
a linear combination of unstable right eigenvectors and generalized eigenvectors. That

is,
ﬂ(to) = Xu(to)zuv (A5)
for some vector z,. Combining (A.5) with (A.4) yields an equivalent equality condition

for n(to) € E*:
Csn(to) =0, (A.6)

where

C. ¥ Y. (o) A(to)- (A.7)

A similar derivation at t = ¢; can be made to replace ‘n(ts) € E* by
Cun(ts) =0, (A.8)

where

C. E Y, (t))A(ty). (A.9)

The linear problem (A.1), (A.6)-(A.9) is then solved and the solution is taken to
be the new approximation of the current iteration. The iteration continues until the
solutions in the adjacent two iterations are satisfactorily close to each other. Solving
the boundary value problem in (A.1), (A.6)-(A.9) is done following a technique from
linear-quadratic optimal control and is carried out in the following steps.

First, apply a change of state variable:

def C 1| def Cs

= n- (A.10)
C2 Cu
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Since Cyn = 0 in (A.6) characterizes the unstable eigenspace of the zero dynamics.
therefore (; = C,n is, roughly speaking, the stable part of . Similarly, {; = C.n is the

unstable part. The inverse transformation is given by

-1

n= . =[T, Tu] ol (A.11)

Differentiating ¢; and (; using equations (A.10)-(A.11) and (A.1), we get
G = An(t)G + An(t)G + Bi(t), (A.12)

G2 = Au(t)C1 + Aza(t)Ca + Ba(t), (A.13) .

and the boundary conditions in (A.6)-(A.9) become ((to) = 0 and (2(ty) = 0. It is
worth pointing out that (;(¢o) = 0 and equation (A.12) form an initial value problem
while (2(ts) = 0 and equation (A.13) form a final value problem. However, these two
problems are coupled.

The second step is to decouple the {; and {; dynamics. Since ¢; and (, satisfy a pair

of linear differential equations, their solutions are also linearly related. That is,
Galt) = S5(t)Gi(t) + o(2), (A.14)
for some functions S(¢) and o(t) with suitable final value conditions
S(t;) =0 and o(t5) =0. (A.15)
Differentiating both sides of equation (A.14) yields
Ga(t) = S(DG(2) + S () + 6 ().

Substituting the values of ¢, and ¢, from (A.12) and (A.13) and comparing the coeffi-

cients of (;(t) lead to

S(t) = An(t) + An(t)S(2) — S(t)An(t) — S()Ara(t)S(2), (A.16)
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G(t) = [A2(t) — S(t)Ara(t)jo(2) + [Ba(t) — S(t) Bi(t)], (A.17)

with final conditions specified in equation (A.15).

The third step is backward and forward integrations. Since equation (A.16) contains
only known functions except S(t), it can be integrated backward in time to get S(t).
Once this is done, equation (A.17) can also be integrated backward in time to solve for

o(t). With S(t) and o(¢) as known functions, equation (A.12) can be rewritten as
Gi(t) = [Au(t) + A®)SHIG(E) + Bi(t) + Au(t)o(t), (A.18)

and it can be integrated forward in time with (;(f9) = 0 to obtain (,(¢). With these, the
algebraic equation (A.14) can be used to obtain (,(¢).

The final step is to use the inverse transformation in equation (A.11) to obtain 7(t)
that will be the solution of the current iteration.

It is worth pointing out that even though all stable inversion results are local and
this appendix presents a local linearization approach to construct stable inverses, the

stable inverse solutions can be, but do not have to be, always locally constructed.
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APPENDIX B USEFUL LEMMAS AND THEOREMS

Useful lemmas and theorems are quoted in this appendix. They are from both theory
of ordinary differential equations and nonlinear systems theory. See the corresponding

references for proofs.

Theorems from Theory of Differential Equations

The following two theorems concerns local properties of solutions to a dynamical
system near the origin. One deals with solutions inside stable or unstable manifolds of
the origin. Another one is about solutions on neither stable nor unstable manifold. The
system is assumed to have a hyperbolic equilibrium point at the origin.

Theorem 10 (See Wiggins [63] for a proof.) Let W* and W* be the local stable and
unstable manifolds of a hyperbolic equilibrium point of a dynamical system. Then the
solutions of the dynamic system with initial conditions in W* (respectively W* ) approach
the equilibrium point at an erponential rate asymptotically as t — +oo (respectively

t— —0o0).

Let the origin be the hyperbolic equilibrium point of a dynamic system. Denote by

B(h) a spherical neighborhood with center at the origin and radius of A.

Theorem 11 (See Miller and Michel [41] for a proof.) Let W* and W* be the local
stable and unstable manifolds of a hyperbolic equilibrium point of a dynamic system.

Then there ezists a &, > 0 (respectively é2 > 0) such that if (7,7(7)) € R x B(&)
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(respectively R x B(6,)) for some solution n of the system but n(t) € W* (respectively
W ), then n(t) must leave the ball B(é,) (respectively B(d2)) at some finite time t; > T

(respectively t; < 7).

Theorems from Nonlinear Systems Theory

Theorem 12 (See Khalil [33] for a proof.) Let £ = 0 be an equilibrium point for the
nonlinear system

z = f(t,z), (B.1)
where f :[0,00) xD — R" is continuously differentiable, D = {z € R" | ||z|]2 < r}, and
the Jacobian matriz [0f/0z] is bounded and Lipschitz on D, uniformly in t. Let

A(t) = —g%(t,z) : (B.2)

r=0

Then, the origin is an exponentially stable equilibrium point for the nonlinear system, if

and only if it is an ezponentially stable equilibrium point for the linear system
z = A(t)z. (B.3)

The following result is the converse Lyapunov theorem for the case when the origin

is an exponentially stable equilibrium point.

Theorem 13 (See Khalil [33] for a proof.) Let z = 0 be an equilibrium point for the
nonlinear system

z = f(¢,z), (B.4)
where f : [0,00) xD — R" is continuously differentiable, D = {z € R" | ||z||2 < r},
and the Jacobian matriz [0f/0z] is bounded on D, uniformly int. Let k, v, and rq be
positive constants with rq < y/k. Let Dy = {z € R" | ||z||2 < ro}. Assume that the

trajectories of the system satisfy

[ z(2) |2 < k|| z(to) |l2e~" ¥}, Vz(to) € Dy, VE > to > 0. (B.5)
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Then, there is a function V : [0,00) x By — R that satisfies the inequalities:

aull=(t) I3 < V(t,2) < coll2(0) I, (B6)
B+ % ft2) < el =013 (B7)
30| <al=0l (B3)

for some positive constants c;, ¢, ¢z and c4.
Consider the system
z = f(t,z) + g(t. z), (B.9)

as a perturbation of the nominal system
z = f(t,z). (B.10)

The following Lyapunov-like theorem is very useful in dealing with such perturbed sys-

tems with non-vanishing perturbation g(t,0) # 0.

Theorem 14 (See Khalil [33] for a proof.) Let D = {z € R | ||z|| < 7} and the
map f : [0,00) xD — R™ be piecewise continuous in t and locally Lipschit= in z. Let

V :[0,00)xD — R be a continuously differentiable function such that

ar([[ z(t) ll2) < V(2 z) < aa(]| z(2) [l2), (B.11)

av +
at
Vt >0, Vz € D, where a1(+), az(-). and as(-) are class K functions defined on [0,r) and

N e S szl Me@lza>0,  (B12)

p < a7'(ai(r)). Then, there ezists a class KL function B(-,-) and a finite t, such that
| z(¢) ll2 < B(ll z(to) ll2.t — ),  VEa <t<ty, (B.13)

lz(t)ll2 < a7t (aa(n)), Vi1, (B.14)
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V|| z(to) |2 < a3'(ai(r)). Moreover, if all the assumptions hold with r = oo, that is
D = R", and o;(-) belongs to class mathcal K, then inequalities (B.18)-(B.14) hold for
any initial state z(to). Furthermore, if a;(r) = ki;r® for some positive constants k; and
c, then B(r,s) = kr exp(—vs) with k = [ky/k1]"¢ and v = [ks/kzc].

The following theorem deals with the perturbed system (B.9) when the origin of the

nominal system (B.10) is exponentially stable.

Theorem 15 (See Khalil [33] for a proof.) Let £ = 0 be an ezponentially stable equi-
librium point of the nominal system (B.10). Let V(t,z) be a Lyapunov function of the
nominal system that satisfies (B.6)-(B.8) in [0,00)xD, where D = {x € R" | ||z]|. < r}.

Suppose the perturbation term g(t,z) satisfies

lg(t,z)lla < 8 < =2, [ 2o, (B.15)
Cq \ C2
forallt >0, z €D, and some positive § < 1. Then, for all || z(to) ||2 < \/c — 1/cor, the

solution of the perturbed system z(t) satisfies
” I(t) "2 S kexp{_7[t - tO]}” I(to) ”2v VtO _<_ t <ty (816)

and

fz@®)ll2<b, Vit (B.17)

for some finite t,, where

k= ]2, 7=[1—_0]c§, b=c_4\/22§, (B.18)
1

(&) 2¢; C3 7}
The following lemma is known as the Barbalat’s lemma.
Lemma 5 (See Khalil [33] for a proof.) Let ¢ : R — R be a uniformly continuous

function on [0,00). Suppose that

lim 0: o(7)dr (B.19)

t—roo

erists and is finite. Then,

é(t) =0 as t = oo. (B.20)
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APPENDIX C INERTIA MATRIX FOR SPACE ROBOTS

In this appendix, detailed and complete description of system inertia matrix M ()

for the flexible space robot studied in Chapter 7 is given.

Notations and Definitions

A list of system’s parameters is as follows:
i5,: inertia of rigid hub of the ¢th link, i1=1,2,
me,:

l;: length of the ¢th link, :=1,2,

tip mass of the th link, :1=1, 2,

e;: product of area moment of inertia and Young’s Modulus, i =1,2,
pi: mass per unit length of the :th link,:=1,2,
mz,: total mass of spacecraft,

moment of inertia of spacecraft about its mass center.

For the convenience of notations. we define the following variables for all 7 = 1 and

W

k

I, l
me, = [ prdz, i =/ pizldz, i, =/ p:z; dz, (C.1)
0 0 0
and matrices N; of dimensions two by one, N;4. of two by one, M; of two by two where

their elements are given by

{ . li . .
[NVi]; = /0 pizi0ijdzi,  [Niga]; = /0 pioijdz;, Yj=1,2 (C.2)

I

&
[A’[;]jk =/ p;O’,'jO‘,'k dz,-, Vj= 1,2, k 1,2, (C3)
o
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where

pi = pi + me0(zi — ). (C.4)

We also define
0-2 déf 02 + U;I(II)QII + 0’;2(11)‘112y (Cs)

fi(-) = hcos(-) = dsin(-), fa(:) = hcos(-) +dsin(-), fs(-) = —hsin(-) +dcos(-), (C.6)
where h is the distance between the mass center of spacecraft and the rigid hub of link
one in the horizontal direction of spacecraft body frame, and d is that in the vertical
direction of the body frame.

System Inertia Matrix

The inertia matrix M (¢) is given by M () = UM (¢)UT where

(L 0 0
0 0 0 0 .
U= O [2 O ’ B3= , , . (Cl)
on(li) o,(L) 00
O B3 14

and M () is positive definite symmetric and its elements are given by:

My = Mgy + Mz, + My, mi =0,

mya = —[mz, + Mz, [f2(80) — [iy, + maz,li ] cos(8o + 0,) — iy, cos(Bo + 8, + 02),
Mg = —[1y, + mz,li ] cos(Go + 6;) — 1y, cos(fo + 6, + 82),

mys = —iy, cos(fo + 0; + 6),

[e ™7l = =[N + mq,01(l1)] cos(by + 8,),

[Thlg 1’7’119] = —N4T COS(00 + 01 + 0_2);

Moy = Mg, +ms, + My,

Moz = [mz, + Mz, | f3(80) — [y, + meyl1]sin(6o + 6;) — iy, sin(fo + 8, + 62),
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thas = —[iy, + mg,ly |sin(6p + 6;) — iy, sin(fo + 8, + 62),
Tos = —1y, sin(fp + 0, + 0-2),
[R2e ™ha7] = -[N,-,T + mz,01(!1) ] sin(6s + 6,),

[as Thag] = — N7 sin(fp + 6, + 65);

Mas = iz + iz, + 1z, + 15, + 16, + Mg [R2 + &)+ me,[RP+ P+ L] +
+2( iy, + mz,l1 | f1(61) + 24y, f1(61 + 62) + 24,11 cos 85,
Mg = iz, + iz, + 5, + by + Mel? + [1y, + mg,li | f1(81) +
+iy, [1(01 + 02) + 23,1y cos b,
Mas = Ury + isy + iy, f1 (01 + 02) + iy,/; cos 02,
[as ma7] = NxT +mz, Lo (L) + [N:,T + mz,01 (L) ] f1(61) + 4,01 ({1) cos 6,.
[as has] = Nj + NIlicosby+ NI fi(6: + 05);
a4 = iz, + iz, + iy, + b, + Mgyl + 24y, 1, cos s, Mas = iz, + is, + 1y, 11 COS B,
[y ™a7] = N;r + mz,l1o1 (1) + iy, 00 (11) cos 83,

[ﬁ'l43 ﬁ'l4g] = NQT + N4Tll CcOos 0-2;

- . . — - . ~ - — T
Mss = iz, + b, [se 57| = ty,01(l1) cos b2, [mss msg] = N; .
- -
Thes Mer Meg Meg -
= My + mq,o7 (L)oy(Ly), = a7 (l;)NT cos b;
Mm7s M7 ] Mg 79
Thgg Mgg M
p—1 2.
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